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a b s t r a c t

We develop a method for retrieving a set of parameters of a quasi-periodic finite-genus
(finite-gap) solution to the focusing nonlinear Schrödinger (NLS) equation, given the
solution evaluated on a finite spatial interval for a fixed time. These parameters (named
‘‘phases’’) enter the jump matrices in the Riemann-Hilbert (RH) problem representation
of finite-genus solutions. First, we detail the existing theory for retrieving the phases
for periodic finite-genus solutions. Then, we introduce our method applicable to the
quasi-periodic solutions. The method is based on utilizing convolutional neural networks
optimized by means of the Bayesian optimization technique to identify the best set of
network hyperparameters. To train the neural network, we use the discrete datasets
obtained in an inverse manner: for a fixed main spectrum (the endpoints of arcs
constituting the contour for the associated RH problem) and a random set of modal
phases, we generate the corresponding discretized profile in space via the solution
of the RH problem, and these resulting pairs – the phase set and the corresponding
discretized solution in a finite interval of space domain – are then employed in training.
The method’s functionality is then verified on an independent dataset, demonstrating
our method’s satisfactory performance and generalization ability.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Inverse Scattering Transform (IST) method, introduced about half a century ago, allows the solution of certain
lasses of nonlinear partial differential equations (PDEs) (the so-called integrable equations), by performing the analysis
f the corresponding linear problems [1–6]. The IST method consists of three steps: (i) solving a linear auxiliary set of
quations and defining a spectral (direct) problem that maps the given initial data (say, the initial conditions) onto a set
f special quantities (spectral data); (ii) establishing the evolution of these spectral characteristics; and (iii) solving an
nverse problem, which allows retrieving the solution of the PDE in question at a particular value of the evolution (time
r propagation distance) variable. Here, the direct and inverse problems refer to a linear operator from the so-called Lax
air [3] of linear, ordinary differential equations, whose compatibility condition is equivalent to the PDE in question. In the
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cases of probably the most famous integrable PDEs, the Korteweg–de Vries equation [1], and the focusing/defocusing NLS
equation [2], the associated linear equations are the Sturm–Liouville equation (or one-dimensional linear Schrödinger
equation) and the Dirac/Zakharov–Shabat systems of two coupled equations [1,2]. Note that the direct and inverse
problems entering the IST are often called nonlinear Fourier transform (NFT) in the optical communications literature [7,8].
For the initial value problems, where the data and the solution are assumed to be vanishing sufficiently fast as the spatial
(non-evolution) variable approach infinities (for which the IST method was originally developed), the direct spectral
problems take the form of scattering problems and the associated spectral characteristics establish the relation of the
different solutions to the linear equations from the Lax pair [9].

As for the inverse problems, the IST method in the original formulation uses the Gelfand–Levitan–Marchenko integral
quations [9]. An alternative approach to the inverse problem is to consider a factorization problem of the Riemann-Hilbert
RH) type, formulated in the complex plane of the spectral parameter [10]. The spatial and temporal variables enter the
H problem as parameters in an extremely simple way. This allows (loosely) viewing the (matrix-valued) RH problems as
n analog to integral representations for special functions of mathematical physics viewed as the solutions of respective
inear differential equations (e.g. Airy equation, Bessel equation, Hypergeometric equations, etc.). Consequently, as it has
een realized since the 90th of the last century, the RH problem representations can be efficiently used for studying
arious properties of solutions of the respective PDEs, particularly various asymptotic regimes [11].
On the other hand, for problems on the circle (corresponding to problems on a finite spatial interval with periodic

oundary conditions), it is the introduction of the so-called finite-genus (or finite-gap) integration methodology in the
970s that had groundbreaking implications. It is particularly possible to generate large classes of exact solutions, the so-
alled finite-gap solutions, obtained from solving a Jacobi inversion problem on a finite-genus Riemann surface [12,13].
hese solutions can be given ‘‘explicitly’’, in terms of associated theta functions. Here we put ‘‘explicitly’’ in quotes since,
rom a computational point of view, these functions are not easily accessible, even though some fast algorithms for their
omputation have been proposed [14,15].
Notice that not all periodic solutions are of a finite-gap type: the corresponding spectral representation may consist of

n infinite number of spectral bands. In turn, not all finite-gap solutions are periodic: their construction may involve
combination of periodic functions with incommensurable frequencies. On the other hand, recent progress in the

daptation of the RH approach to initial boundary value problems for integrable PDEs (on a half-line or an interval),
ssociated with the development of the Unified Transform Method (a.k.a. the Fokas Method [16]), suggests a similar
pproach for linking the IST methods to the periodic (and/or finite-gap) problems. In the recent papers [17,18], it was
hown (in the case of NLS equation) that the solution of the initial boundary value problem on a finite interval with x-
eriodic boundary conditions can be formulated in terms of the solution of an associated RH problem, where the relevant
ump matrices can be expressed explicitly in terms of the spectral (actually, scattering) data, which are computed via the
nitial data.

When discussing the applications of the IST methods to real-world problems, a crucially important issue is how
fficiently the proposed method can be implemented numerically. The practicality of approaches based on the RH problem
ormalism is supported by recent progress in developing an efficient numerical framework for approximating the solutions
o matrix-valued RH problems [10,19–21].

The theory of finite-genus solutions to the NLS equation has been intensively used in the water (ocean) waves
nalysis [22,23]. At the same time, over recent years, there has been a growing interest in the development of optical
ommunication methods based on the utilization of non-decaying (periodic) solutions to NLS equation [24–30] as a more
fficient alternative to the soliton-based communications [31]. The IST operations associated with periodic finite-genus
LS solutions were named periodic nonlinear Fourier transform (PNFT) in these works. In Refs. [28,29], an optical signal
odulation and digital signal processing (DSP) method has been proposed for a PNFT-based transmission, where the

nverse problem step (constructing a signal in the physical domain, at the transmitter side, given spectral parameters on
hich the transmitted information is encoded) harnesses the numerical solution of an RH problem. The data for this RH
roblem are 2 × 2 jump matrices, which are off-diagonal matrices satisfying a certain symmetry condition, with constant
ntries on each separated part of the jump contour consisting of a finite number of arcs (see Appendix). The solution of
uch an RH problem gives rise to a finite-gap (finite-genus) solution to the NLS equation [13,32]: the endpoints of the arcs
ix the associated Riemann surface, while the constants in the jump matrices specify an individual solution. Here, the NLS
volution is translated, using spectral terms, into a linear evolution of the constants (naturally understood as real-valued
hases varying from 0 to 2π ) in the jumps matrices, with the individual frequencies uniquely determined by the main
pectrum (the ends of the spectral arcs). Finally, the decoding procedure at the receiver side consists in solving the direct
roblem, mapping the received signal as (periodic) function to the (finite-dimensional) space of phases.
In [28,29], restricting to the case of solutions which are both periodic and of a finite-genus type, calculations for the

irect problem were presented based on the appropriate RH problem deformation found by the authors. However, the
roposed approach faced challenges decreasing the efficiency of the method: (i) the phases were determined modulo
(au lieu of theoretically possible 2π ); (ii) the procedure required not only the calculation of the auxiliary spectrum

the eigenvalues of the associated Dirichlet boundary value problem for the Zakharov–Shabat operator), but also a correct
pecification of those eigenvalues lying on an appropriate sheet of the (two-sheet) Riemann surface. One more drawback of
he (current state of) implementation of the direct part of the RH formalism is that it can be applied to the periodic problem
nly, thus requiring additional efforts (particularly for numerical implementations) to ensure the commensurability of
2



S. Bogdanov, D. Shepelsky, A. Vasylchenkova et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107311

t
t
s
p
a
p
c
s
a
a

p
u
a
s
e
a
N

2

c

T
e

2

N
j
o
N
N

p
p
t
f

I
p
s

frequencies. However, from the optical communications viewpoint, the latter rather looks like an artificial complication
of the signal encoding stage, resulting from a technical but not fundamental limitation. Therefore, the new approaches
where the periodicity requirement can be circumvented are particularly interesting from the optical communications
perspective.

In the end, we notice that artificial neural networks (NNs) have been widely implemented to solve various tasks related
o inverse scattering [33,34]. Turning closer to the subject of the current paper, we first mention Refs. [35,36], where
he NN-based methods were used for the demodulation (identification of nonlinear parameters) in optical (NLS) solitonic
ystems. Ref. [37] proposes a receiver based on regression NNs that can demodulate information for both single- and dual-
olarization NLS systems. In Ref. [38], the authors propose a demodulation method for eigenvalue-modulated signals using
n eigenvalue-domain NN, and demonstrate its effectiveness through simulation and experimental results. Recent Ref. [39]
resents the development of two convolutional neural network (CNN)-based approaches with different complexity to
ompute the continuous nonlinear spectrum associated with decaying signals. Based on Wavenet architecture [40], the
pecial CNN structure called NFT-Net was developed in [41]: it allows determining the continuous nonlinear spectrum
ssociated with a decaying (actually finite-extent) profile. We will use this NFT-Net convolutional NN structure from [41]
s a starting point for our study below.
In the current paper, we describe a method for using a NN to extract the ‘‘phases’’ associated with the arcs of an RH

roblem from the finite-genus NLS solution waveform. To do this, we designed a special NN architecture and trained it
sing a large dataset of waveforms and corresponding phase information. Determining the optimal hyperparameters for
NN can be a complex and time-consuming task, as it involves multidimensional optimization. The NN architecture pre-
ented in this article has a few dozen hyperparameters, which makes grid-based optimization methods computationally
xpensive and inefficient. As an alternative, we used the Bayesian optimization method, which is effective in tasks with
high number of parameters [42]. To find the best architecture for the NN, we used Bayesian optimization starting with
FT-Net [41] as an initial value for NN’s hyperparameters.

. Direct spectral problem for finite-genus NLS solutions parametrized via RH problem

As mentioned in the introduction, a wide variety of solutions of an integrable nonlinear evolution equation can be
onstructed in terms of a solution to a family of RH problems (parametrized by x and t) whose data depend on x and t
in a way specific to an integrable nonlinear equation in question. Specifically, the so-called finite-genus solutions of the
focusing NLS equation,

iqt + qxx + 2|q|2q = 0, (1)

(the NLS equation is written for a dependent field variable q and time/evolution (t) and space (x) independent variables),
can be characterized as follows [13,32].

1. They are specified by two sets of numbers: (i) complex-valued {λj}
N
0 for some integer N , with Im λj > 0; and (ii)

{φj}
N
0 with real φj ∈ [0, 2π ). Note that φj, the phases, are exactly the parameters, the computation of which is

addressed in our study here.
2. They can be constructed in terms of the solution of a family of the RH problems, formulated in the complex λ-plane

and parametrized by x and t , the data for which are given in terms of sets {λj}
N
0 and {φj}

N
0 .

he associated RH problem and the relations relating the RH problem solution to finding the finite-genus solutions to NLS
quation are detailed in Appendix for the completeness of our exposition.

.1. Direct problem in the periodic case

The direct problem associated with the inverse problem presented in Appendix consists of the following: given a
-genus solution q(x, t) of the NLS equation, associated with a prescribed Riemann surface (prescribed branch points λj,
= 0, 1, . . . ,N) and evaluated as a function of x at some fixed t = t∗, determine the underlying phase parameters φj. In
ur setting, we start from the inverse problem (given specific spectral characteristics, find the underlying solution of the
LS equation), and so the direct problem reproducing these spectral characteristics given an appropriate solution of the
LS equation at a fixed evolutionally variable t can be viewed as ‘‘an inverse problem to the inverse problem’’.
In the case where C f

j together with f0 are commensurable (see Eqs. (A.7)–(A.16) for the definitions of respective
arameters), and thus, the underlying solution of the NLS equation is periodic in x, a possible way to solve the direct
roblem is based on the idea of finding a RH representation for the solution of the initial boundary value problem (IBVP) for
he NLS equation, where the initial data given for x varying on an interval (of the periodicity length L), i.e., q(x, 0) = q0(x)
or x ∈ (0, L), are supplemented by the periodicity conditions:

q(0, t) = q(L, t), qx(0, t) = qx(L, t) for all t ≥ 0. (2)

f the RH problem in this representation has the same structure as the original RH problem, i.e., it is described by RH
roblem conditions 2 and 3 from Appendix, then the constants φj appearing in the jump construction will give the sought
olution of our direct problem.
3
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To get the appropriate representation, one can proceed in two steps: (i) first, provide some RH representation (with
some contour and jumps), where the data for the RH problem can be constructed from the data of the IBVP, i.e., the initial
data q0(x) for x ∈ (0, L); (ii) second, using the flexibility of the RH representation for the solution of nonlinear equations,
transform this (original) RH problem to that having the above-mentioned desired form.

The first step has been recently addressed in [17,18], where it was shown that in the case of focusing NLS equation,
the solution of the periodic IBVP can be given in terms of the solution of a RH problem, where (i) the contour is the union
of Γ = ∪

N
j=0Γj and the real and imaginary axes, and (ii) the jump matrices can be constructed in terms of the entries a(λ)

and b(λ) of the scattering matrix

s(λ) =

(
a∗(λ∗) b(λ)

−b∗(λ∗) a(λ)

)
associated with the Zakharov–Shabat spectral problem (the x-equation of the Lax pair for the NLS equation):

Φx = UΦ, (3)

with

U = −iλσ3 +

(
0 q

−q∗ 0

)
considered on the whole line, with the potential q = q(x, 0) involved in U being continued on the whole line (outside
(0, L)) by setting it to 0. In turn, this step can be performed in two sub-steps. In sub-step 1, a RH problem is constructed
using the spectral functions a(λ) and b(λ) supplemented by the spectral functions A(λ) and B(λ) that enter the scattering
matrix:

S(λ) =

(
A∗(λ∗) B(λ)

−B∗(λ∗) A(λ)

)
,

associated with the t-equation from the Lax pair,

Φt = VΦ, (4)

with V (t) = −2iλ2σ3 + 2λV1(t) + V2(t), where

V1(t) =

(
0 q(0, t)

−q∗(0, t) 0

)
, V2(t) = −i

(
V 2
1 (t) +

(
0 qx(0, t)

−q∗
x (0, t) 0

))
σ3.

Namely, assuming for a moment that q(0, t) and qx(0, t) are given for t ∈ (0, T ) with some T > 0, Eq. (4) can be considered,
similarly to (3), as a spectral problem for a matrix equation with coefficients determined in terms of q(0, t) and qx(0, t).
Since V in Eq. (4) is a polynomial of the second order w.r.t. λ, it follows that the contour where the scattering relation is
established consists of two lines, the real and imaginary axes (where Im λ2

= 0).
An obvious drawback of this construction (of the RH problem) is that neither q(0, t) nor qx(0, t) are given as the data for

the IBVP. Then sub-step 2 addresses the problem of replacing the RH problem constructed in terms of a(λ), b(λ), A(λ), and
B(λ) by an equivalent one (in the sense that q(x, t) obtained following (A.4) from the both problems are the same), whose
formulation involves a(λ) and b(λ) only. A key for performing this sub-step is the so-called ‘‘global relation’’ [16,17,43],
which is a relation amongst a(λ), b(λ), A(λ), and B(λ) reflecting the fact that the IBVP with periodic boundary conditions
is well-posed (particularly, has a unique solution) without prescribing the boundary values q(0, t) and qx(0, t).

In the current setting (i.e., for the periodic problem in x), the global relation takes the form of the equation:

e2iλL
(
A(λ)a∗(λ) + B(λ)b∗(λ)

)
B(λ) + (A(λ)b(λ) − a(λ)B(λ)) A(λ) = (5)

= e4iλ
2TO

(
1 + e2iλL

λ

)
, (6)

where the r.h.s. is not given precisely but only asymptotically, as λ → ∞. Noticing that the r.h.s. in (5) approaches 0
as λ → ∞ staying in the first quadrant of the complex λ-plane suggests replacing the r.h.s. by zero, which leads to a
quadratic equation for the ratio B(λ)/A(λ), with the coefficients given in terms of a(λ) and b(λ). Define R(λ) as the solution
f this equation:

R(λ) =
e−iλLa(λ) − eiλLa∗(λ∗) +

√
(e−iλLa(λ) − eiλLa∗(λ∗))2 − 4b∗(λ∗)b(λ)
2eiλLb∗(λ∗)

, (7)

here the branch of the square root is chosen such that the branch cuts are the arcs connecting the pairs of complex
onjugate points (actually, they are λj and λ∗

j ) and that R(λ) → 0 as λ → ∞. Then, one can show that the RH problem
ought at sub-step 2 is that obtained from the original RH problem, where B(λ)/A(λ) is replaced by R(λ). Due to the
umps of R(λ) across the arcs connecting λj and λ∗

j , additional jump conditions on these arcs arise and, thus, the jump
ontour takes the form: ∪

N
j=0Γj ∪ R ∪ iR, whereas the jump matrix on all parts of the contour can be algebraically given

n terms of a(λ), b(λ), and R(λ). To complete the formulation of the RH problem from step 1, the jump conditions have to
4
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be complemented by the residue conditions at zeros of a(λ) and singularities of R(λ) in the respective quadrants, if any
these are also given in terms of spectral quantities determined by the initial data only). For the exact formulation of the
H problem of step 1, see [18], Theorem 4.6.1
We note that the scattering matrix s(λ) in our setting is closely related to the monodromy matrix M(λ), a key object

f the spectral theory associated with the Zakharov–Shabat equation with periodic conditions. The monodromy matrix is
efined as M(λ) = Φ(L, 0, λ), where Φ(x, 0, λ) is the solution of Eq. (3) satisfying the condition Φ(0, 0, λ) = I:

M(λ) = e−iλLσ3s−1(λ) =

(
e−iλLa(λ) −e−iλLb(λ)
eiλLb∗(λ∗) eiλLa∗(λ∗)

)
, (8)

where we have taken into account that detM(λ) = det s(λ) ≡ 1. Accordingly, R(λ) can be expressed in terms of the entries
f the monodromy matrix:

R(λ) =
M11(λ) − M22(λ) +

√
∆2(λ) − 4

2M21(λ)
, (9)

where ∆(λ) := M11(λ)+M22(λ). In this context, {λj, λ
∗

j }
N
0 are called the main spectrum; they are simple zeros of ∆2(λ)−4

and thus the branch points of (9). On the other hand, the simple zeros of M12(λ) which are not double zeros of ∆2(λ)− 4
as well as the multiple zeros of M12(λ)) constitute the auxiliary spectrum {µj}

N
1 .

The second step consists of transforming the RH problem described above (with jumps across ∪
N
j=0Γj ∪ R ∪ iR and

esidue conditions) to a RH problem of the form (A.2)+(A.3)+(A.1) with some constants φj. This step can also be divided
nto two sub-steps: (i) transforming the RH problem to that with jumps across Γ = ∪

N
j=0Γj only (thus getting rid of jumps

cross R and iR and singularity conditions); (ii) making the jumps on each Γj to have the structure as in (A.1).
In the case N = 0, this step has been done in [17,18]; in this case, the contour for the RH problem consists of a single

rc, and there are no singularity conditions. The associated (0-genus) solution of the NLS equation is a simple exponential
unction: q(x, t) = αe−2iβx+2iωt+iφ0 , where α = Im λ0, β = Re λ0, and ω = α2

− 2β2.
The cases with N ≥ 1 turn out to be much more involved. Particularly in the realization of the first sub-step, one faces

he following problems:

(i) We need to get rid of singularity conditions at the singularity points of R(λ), which can be characterized as zeros of
the denominator in (9) that are not zeros of the numerator in (9). In terms of the spectral theory of the Zakharov–
Shabat equation with periodic boundary conditions, the (possibly empty) set of such singularity points {µj}

N1
1 ,

N1 ≤ N consists of those conjugated auxiliary spectrum points for this problem which are located on the sheet
(of the two-sheeted Riemann surface of R) characterized by the condition R(λ) → 0 as λ → ∞.

(ii) The resulting (λ-dependent) jump matrix is as follows [29]:

J̌(x, t, λ) =

(
0 iJ0(λ)e−2iλ(x−L)−4iλ2t

iJ−1
0 (λ)e2iλ(x−L)+4iλ2t 0

)
, λ ∈ Γ (10)

(in the notations of [29], P(λ) = log J0(λ)), where it is the square of J0(λ) that has a simple expression in terms of
R±(λ) or, alternatively, of the entries of the monodromy matrix:

J20 (λ) =
R+(λ)
R∗

+(λ)
Q 2(λ) =

R−(λ)
R∗

−(λ)
Q 2(λ) = −

M12(λ)
M21(λ)

Q 2(λ), (11)

where Q (λ) =
∏N1

j=1
λ−µj
λ−µ∗

j
.

Having J0(λ) obtained, the second sub-step (reducing the jump to that as in (A.1)) is well-defined; it can be done using
the solution of the scalar RH problem

d+(λ)d−(λ) = J0(λ)eiφj , λ ∈ Γj, j = 0, . . . , N, (12)

d(λ) → 1, λ → ∞. (13)

Here the constants φj are not prescribed but determined uniquely by the conditions in (12), see (13)–(16) in [29]; they
turn out to be the phases sought in the direct problem.

On the other hand, because of items (i) and (ii) given above, the problem of computing J0(λ) numerically turns out to
be challenging at least in two aspects: (i) choosing the relevant auxiliary spectrum points and (ii) choosing the appropriate
branch of the square root

√
−M12(λ)/M21(λ). For instance, ignoring (ii) reduces the range of uniquely determined φj to

0, π ) [29].
The above-mentioned problems in the realization of the ‘‘direct problem step’’ already in a situation limited by the

eriodicity requirement incites us to use a methodologically different approach for this step: soft-computing. In the next
ection, we present the method based on convolutional neural networks, which, though being an approximation, can be
sed for non-periodic finite-genus solutions with incommensurable frequencies C f

j .

1 In [18], the notation Γ̃ is adopted for R.
5
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Fig. 1. The profile of 4-genus solution in physical domain (left) corresponding to phases φ values {π, π
6 , 3π

2 , 2π
3 , 7π

6 } and its main spectrum (right).
he arcs (vertical cuts) in the λ-plane connecting the complex conjugated pairs of the main spectrum points are also depicted.

. Neural networks for phases computation

Soft computing can be defined as a set of techniques to address complex, real-world problems that cannot be solved
sing traditional, deterministic models. It includes approaches such as artificial NNs, genetic algorithms, and fuzzy logic,
hich are based on learning from data rather than precise modeling. An NN typically consists of an input layer that
eceives a set of known parameters and one or more hidden layers that can be fully-connected, convolutional, recurrent,
tc. The hidden layers contain a large number of adjustable parameters (weights), which are optimized through a training
rocess using the available data. The output layer, which determines the number of classification classes or values to be
redicted in the regression case, is determined by the specific task.
Convolutional NNs (CNNs) are inspired by the principles of animal vision and are designed to extract features from

nput signals [44]. CNNs are a type of NNs that are particularly well-suited for processing and analyzing data that has
spatial or temporal structure. One reason why CNNs are efficient for nonlinear transformations is that they can learn
nd adapt to complex patterns and relationships in data. They do this through convolutional layers, which apply filters
o the input data to extract features and create a representation of the data more suitable for learning. These filters are
ble to recognize patterns in the data and extract the relevant features, even if the relationships between the features are
onlinear. Another reason why CNNs are effective for nonlinear transformations is their ability to handle a large number
f input variables.
The benefit of using NNs for our problem is that they can handle high complexity and nonlinearity. The IST is an

peration that decomposes a solution into its nonlinear spectrum components, which can be quite challenging for complex
rofiles (signals). Another advantage of using NNs is their ability to generalize to new data. Once an NN has been trained
n a data set, it can make predictions on new, unseen data. This can be particularly useful in the case of the IST (nonlinear
ourier transform) for optical signals, as it allows the neural network to make predictions based on patterns it has learned
rom a large dataset rather than relying on a specific set of predetermined rules.

.1. Solutions set preparation and data collection

A finite-genus solution can be described in terms of the parameters, the spectral data, defining the jump matrices of
he RH problem, see Appendix. These parameters include the endpoints of the jump arcs, λj, the main spectrum points,
nd the constants φj, referred to as phases, that are included in the jump matrices (A.1). A nonlinear harmonic is a
olution component defined by a single arc connecting a main spectrum point to its complex conjugate, along with a
hase represented by a jump matrix entrance on the arc. An example of the main spectrum of a 4-genus solution and its
rofile in the physical space x (taken at a fixed value of evolution variable t) is depicted in Fig. 1.
In this work, three different configurations of the main spectrum were used to test the performance of the proposed

algorithm for solving the direct problem. Two of these configurations correspond to 4-genus solutions with different
values of the imaginary part of the main spectrum (Im λj = 1 and Im λj = 5 for all values of j), corresponding to different
power levels of the solution, while the third configuration is an 8-genus solution with Imλj = 1. The algorithm’s flexibility
is demonstrated by its ability to handle these different configurations; the latter are listed in Table 1 and characterized
by their main spectrum points in the upper complex half-plane. These variations in the scattering data structure of the
signals allow us to evaluate the algorithm’s performance under various conditions.

The data for the NN have been collected by solving the inverse problem for the given main spectrum configurations
with uniformly randomly distributed phases φj in the interval from 0 to 2π . An implemented algorithm is based on RH
problem solver [10,19,45]. The number of solutions generated for each main spectrum configuration was 4 × 105. Each
dataset was split into three unequal parts: the train, validation, and test data, corresponding to 80%, 17.5%, and 2.5% of
the entire dataset, respectively. The training set was used to train the NN model. The validation set was used to evaluate
6
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Table 1
The main spectra for 4-genus solutions with Im λ = 1 and
Im λ = 5, and for 8-genus solution with Im λ = 1.
Genus Main spectrum

4-genus -2+i, -1+i, i, 1+i, 2+i
4-genus -2+5i, -1+5i, 5i, 1+5i, 2+5i
8-genus -4+i, -3+i, -2+i, -1+i, i, 1+i, 2+i, 3+i, 4+i

the model’s performance during the training process, and the test set was used to evaluate the final performance of the
model with unseen data. The test set should represent the types of data the model is expected to encounter in real-world
applications.

Generally, if the frequencies of a finite-genus solution (constants C f
1, C

f
2, . . .) are not commensurable, the resulting

olution is not periodic. To represent the solution on a final duration (via a finite number of discrete points), a maximum
eriod L0, corresponding to the minimal frequency, was chosen. This ensures that each nonlinear harmonic has at least
ne period within L0. The number of x-discretization points of q(x) in L0 is kept constant for all cases and equals 128. To
ake advantage of the cyclical nature of phases in the RH problem approach, their values used during the training of the
N were chosen as complex points on the unit circle, even though a single real number determines every phase of the
olution. In this research, two real numbers were used to represent each phase: the real part, Re eiφj , and the imaginary
part, Im eiφj . Such a representation allowed us to eliminate the problems arising at the ends of [0, 2π ) interval of phase
variation.

3.2. Neural network architecture

The architecture of the NN used in our work is based on NFT-Net NN [41]. The convolutional structure of NFT-Net
provided high effectiveness for implementing conventional nonlinear Fourier transform (for rapidly decaying solutions).
Since the basic principles of the scattering transforms are the same for the case of vanishing and periodic boundary
conditions, the NFT-Net seems to be a good candidate for the initial iteration of the structure optimization procedure in
our case.

The nonlinear transformation of an initial signal to the phases provided by the NFT-Net-type NN can be described as
follows: the discretized solution is fed into the CNN, which applies filters to extract the desirable features. The filters are
typically small, with a fixed size and shape, and are designed to recognize specific patterns in the data. As the filters move
across the solution, they produce feature maps representing the solution at different scales and orientations. These filters
can recognize patterns in the data and extract the relevant features, even if the relationships between the features are
nonlinear. The size of these feature maps is determined by the original solution’s size, the filters’ size, and the number of
filters used. The feature map provided by the previous convolutional layer serves as an input for the next layer. Multiple
consecutive convolutional layers extract a set of primitive features from the input data in the first layer and increasingly
complex and abstract features in subsequent layers. The filters used in these layers are trainable, meaning that they can be
adjusted and adapted to a specific transformation based on the input data under consideration. This flexibility allows the
NN to learn and extract relevant features from the data. The output of the convolutional layers is then passed through one
or more fully connected layers, which perform a linear operation on the data and apply a nonlinear activation function.
These layers are used to learn complex relationships between the features extracted by the convolutional layers and the
output of the CNN. The output of the NN is a set of real values representing the real and imaginary parts of eiφj , from
which we extract the desired phases φj.

To optimize the NN performance, we used Bayesian optimization, employing the NFT-Net architecture [41] as an initial
structure guess. One advantage of Bayesian optimization is that it is typically able to search the hyperparameter space
more efficiently than other methods, such as grid search or random search [42]. This is because it takes into account the
previous results and uses them to guide the search toward the most ‘‘promising’’ areas of the hyperparameter space. The
optimization process begins by defining the range of possible values for each hyperparameter and the objective function
that will be used to evaluate the model’s performance. A probabilistic model is then fit to the data using the initial set of
hyperparameter configurations and their corresponding performance scores. This model is used to predict the performance
for different hyperparameter configurations. The next step is to select the hyperparameters that are expected to maximize
the model’s performance, according to the probabilistic model. This configuration is then evaluated using the objective
function, and the performance score is recorded. The probabilistic model is then updated with the new data point (the
selected hyperparameters and its corresponding performance score). This updated model is used to guide the search for
the following hyperparameter configuration. The process is then repeated, with the updated probabilistic model being
used to select the next hyperparameter configuration, and the process continues until the desired number of iterations
is reached.

The hyperparameters with which the Bayesian optimizer manipulated included the number and type of layers
(convolutional and fully-connected), the size and stride of the filters in the convolutional layers, the number of neurons

in the fully-connected layers, and the activation function types used. The Bayesian hyperparameters optimization was

7
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Fig. 2. An optimized neural network architecture used for retrieving the phases for all test cases. Each shape on the figure corresponds to a particular
N layer, where the values of parameters are given above the shapes.

Fig. 3. Behavior of the loss function vs. epoch number for the training and validation runs. The figure corresponds to the case where we were
retrieving the phases for the 4-genus solution with Im λ = 1.

applied to the data corresponding to the 4-genus solution with Im λj = 1, and the particular architecture obtained is
iven in Fig. 2. We used this architecture as an initial input for the Bayesian optimization for other solutions (4-genus
ith Im λj = 5 and 8-genus with Im λj = 1) but observed no further prediction improvement within some time. Therefore,
he resulting optimized NN architecture from Fig. 2 was used in all the test cases.

Let us introduce the value that defines the error between the predicted and true phase values:

∆j = eiφ
pred
j − eiφ

true
j ,

here index j denotes the corresponding nonlinear harmonic. Re∆j and Im∆j are real and imaginary parts of the error,
orrespondingly. To measure the error in the NN’s predictions, we used the mean squared error (MSE) loss function:

Loss =

∑
j

[(
Re∆j

)2
+
(
Im∆j

)2]
. (14)

To optimize the weights of the NN, we used the Adam algorithm with the 10−4 learning rate. After 5000 epochs of
training, the NNs did not show any improvement in their performance, so the respective weights’ values were chosen as
optimal and used in the inference. An example of the behavior of the loss function for the training and validation of our
NN (for the case of 4-genus solutions with Im λj = 1) is depicted in Fig. 3. The NN was developed and trained using the
Keras framework.

4. Results

We define the error in the predicted phase as follows:

φ = |φ − φ |.
err true pred

8
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Fig. 4. The distributions of an error of predicted phases and their mean values. The black points are predictions of individual phases, while the
ean value is average over all cases in a subinterval and over all nonlinear harmonics.

Fig. 5. The true and predicted labels for both 4-genus solutions (Im λ = 1 and Im λ = 5) and 8-genus solution with phase φ sets {0, 5π
3 , 19π

12 , 7π
6 , π},

7π
6 , 2π

3 , π
12 , 3π

2 , π
2 }, {

7π
12 , 7π

4 , 3π
2 , π, 4π

3 , 11π
6 , π

12 , 5π
3 , 13π

12 } correspondingly. The green circles corresponding to true values are sized up to be seen
better.

The distributions of the errors of individual predictions are given in Fig. 4. We divide the interval [0, 2π ) into 100
ubintervals and calculate a mean error value over all phases in the subinterval for all nonlinear harmonics. The mean
alues of the error are distributed homogeneously over the phase: 1.9 × 10−3, 9.7 × 10−3 and 1.5 × 10−2 for 4-genus

solutions (Im λj = 1 and Im λj = 5) and 8-genus solution with Im λj = 1, correspondingly. These results demonstrate that
we achieved sufficient accuracy using a NN. However, later on, we will discuss the factors that influence the accuracy of
the prediction.

We also present a result of individual predictions for three solution configurations, Fig. 5. We construct the points with
Cartesian coordinates Re eiφj and Im eiφj that correspond to the output of our NN (red circles) and compare them with true
values (green circles).

One interesting effect we observed is that the phases of the different nonlinear harmonics determined via the NN
vary in accuracy. To demonstrate this more clearly, we drew the distribution of prediction errors for different nonlinear
harmonics. As a measure of accuracy, we calculate the mean phase error over the interval [0, 2π) for each nonlinear
harmonic separately, see Fig. 6.

In Fig. 6, the distributions of errors in phase prediction are given for all considered main spectrum configurations.
For simplicity, we located every error value above a cut connecting the corresponding main spectrum point λj with its
complex conjugate. The phases of central nonlinear harmonics have a lower accuracy than those closer to the ends of the
Reλ band interval. So far, we have not found a plausible explanation for this effect. The difference in the errors for two
types of 4-genus solution (blue and red dots in the left panel of Fig. 6) arises because the 4-genus solution with Im λj = 1
(blue dots in the left panel of Fig. 6) has a lower imaginary part of the main spectrum for all points, and so the lower
nonlinearity in comparison with 4-genus with Im λj = 5 (red dots in the left panel of Fig. 6). Taking into account that
the solution of the RH problem involves an integration over the cuts of the main spectrum, and these cuts are five times
longer in the case of genus 4 with Im λj = 5, the solver provides lower accuracy for 4-genus solution (Im λj = 5) as long
as we keep the same discretization rate for both cases.

5. Discussion and conclusions

In the current paper, we proposed solving the direct problem for the finite-genus solutions to the NLS equation
(i.e., given the x-profile of a finite-genus solution, retrieve the parameters in its RH representation) using convolutional
neural networks. Our approach eliminates a set of restrictions for the direct problem.

The previous method allowed us to deal only with exactly-periodic solutions and determine phases modulo π , the
respective procedure required the involved computation and analysis of the auxiliary spectrum. The proposed method is
devoid of the listed shortcomings as we can obtain the training data for the NN using the existing RH problem solver:
9
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Fig. 6. Error distribution between different nonlinear harmonics. The error value for each nonlinear harmonic is located above the corresponding
points of the main spectrum.

the resulting NN structure demonstrated the capability to deal with arbitrary phase distributions and generalize to other
cases (larger power and higher genus).

An essential novelty and advantage of our approach are expanding a class of solutions for which the direct problem
an be solved: the exact periodicity (modal frequency commensurability) ceases to be a mandatory condition within the
oft-computing method presented in our work. Insofar as the proposed method works for any finite-genus solutions, its
otential applications are larger. We notice that the theory allowing us to calculate the direct problem for N-genus solution

to the NLS equation with arbitrary non-commensurable frequencies does not exist, and our soft-computing approach is
only a way up to date to deal with this difficulty.

A choice of neural network architecture was a crucial part of our study. Though CNNs have proved viable in previous
similar research, some adaptations and optimizations have been required. In our case, as far as we do not utilize any
specially designed solver for the direct problem, it is the solver for the inverse RH problem that provided us with the
raining and testing datasets.

Many factors determine the accuracy of the NN-based phase retrieving. The most critical issues are the accuracy of
olving the inverse problem in the data generation stage and the amount of training data. Moreover, the neural network
rchitecture and hyperparameters values significantly impact on the performance.
A possible reason for the non-uniform distribution of errors for different nonlinear harmonics is that the central

armonics are more affected by the accuracy of calculations for neighboring harmonics than the side harmonics, and
e had lower computational errors when dealing with the data generated for the latter. This is indirectly confirmed by
he fact that the distribution in the case of 5 harmonics for different imaginary parts of λj, demonstrates approximately
he same shape (left pane in Fig. 6). However, this issue remains an open question and requires further study.

In the end, we note that the generalization of our approach to predict not only the phases (when having the main
pectrum fixed) but also the main spectrum together with phases requires more effort. We also note that here we did
ot attempt to compress the NN model to reduce its computational complexity, while the usage of model compression
echniques [46] is definitely important if we aim at developing some efficient signal processing solutions.

Finally, we note that in application to optical fiber communications, we need to consider a dual-polarization sys-
em [47], which is conventionally modeled by a coupled system of the NLS equations, also known as the Manakov
ystem [48–50]. Since the Manakov system is integrable (possesses the Lax pair representation), it is natural to generalize
ur approach to this system. However, such a generalization faces at least two problems: (i) the underlying Riemann–
ilbert formalism involves 3 × 3 matrices, which makes its numerical implementation more complicated (compared to
he 2 × 2 case); (ii) currently, there is no available theoretical description of the connection between algebro-geometric
olutions to the Manakov system and solutions to the respected Riemann–Hilbert problem with piece-wise constant jump
atrices across the arcs of a certain contour. Thus, generalizing our approaches to the Manakov equations case is still an
pen question requiring more studies.
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ppendix. Riemann-Hilbert formulation of the inverse problem associated with finite-genus solutions to focusing
LS equation

Consider the following RH problem.
iven

• the oriented contour Γ = ∪
N
j=0Γj, where Γj = (λj, λ

∗

j ) (an arc connecting λj with λ∗

j ), and
• the 2 × 2-valued function

J(x, t, λ) =

(
0 ie−iφj−2iλx−4iλ2t

ieiφj+2iλx+4iλ2t 0

)
, λ ∈ Γj, (A.1)

where φj ∈ [0, 2π ), j = 0, . . . ,N , find a 2 × 2-valued function Ψ (x, t, λ) such that:

1. For all x ∈ R and t ∈ R, Ψ (x, t, λ) is analytic w.r.t. λ for λ ∈ C \ Γ̄ and continuous up to Γ from the both sides of
Γ ;

2. The limiting values Ψ +(x, t, λ) and Ψ −(x, t, λ), λ ∈ Γ of Ψ (x, t, λ), as λ approaches Γ from the + and - side
respectively, are related by J(x, t, λ):

Ψ +(x, t, λ) = Ψ −(x, t, λ)J(x, t, λ), λ ∈ Γ ; (A.2)

3. At λj and λ∗

j , Ψ (x, t, λ) has singularities of the order of no bigger than the inverse fourth root;
4. As λ → ∞,

Ψ (x, t, λ) = I + O(1/λ), (A.3)

where I =

(
1 0
0 1

)
.

Having the RH problem (A.1)–(A.3) solved for all x and t , determine Ψ1(x, t) from the asymptotic behavior of Ψ (x, t, λ)
as λ → ∞: Ψ (x, t, λ) = I +

Ψ1(x,t)
λ

+ . . . . Then q(x, t) is given by

q(x, t) := 2i[Ψ1]12(x, t) (A.4)

(where [·]12 stands for the 12 entry of a matrix), is a solution of the NLS equation of finite-genus type: it can be expressed
in terms of Riemann theta functions associated with the Riemann surface of genus N , with the branch points at λj and
λ∗

j , j = 0, . . . ,N .
The statement that q(x, t) determined as above can be explicitly expressed in terms of certain Riemann theta functions

(with parameters depending on x and t) is based on the possibility to express q(x, t) in terms of the solution of another
RH problem (see Proposition 1 below), which can be considered as a transformation of the original RH problem evoking
the so-called ‘‘g-function mechanism’’ [32].

In order to formulate the transformed RH problem, we need a set of parameters uniquely defined by the set of the
branch points λj and λ∗

j , j = 0, . . . ,N . First, define w(λ) by

w(λ) =

N∏√
(λ − λj)(λ − λ∗

j ) (A.5)

j=0

11
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as a function analytic in C \ Γ whose branch is fixed by the asymptotic condition w(λ) ≃ λN+1 as λ → ∞. Let each arc
j be oriented upward and let w+(λ) be the values of w at the ‘‘+’’ side of the corresponding Γj. Further, define the N ×N
atrix K by

Kmj :=

∫
Γj

ξm−1dξ
w+(ξ )

, m, j = 1, . . . ,N (A.6)

nd determine the vectors Cf
:= (C f

1, . . . , C
f
N )

T and Cg
:= (Cg

1 , . . . , Cg
N )

T as the solutions of the following linear equations:

K · Cf
= [0, . . . , 0, −2π i]T , K · Cg

= −4π i

⎡⎣0, . . . , 0, 2,
N∑
j=0

(λj + λ∗

j )

⎤⎦T

. (A.7)

inally, determine the constants f0 and g0 from the large-λ developments of two scalar functions analytic in C \ Γ :

f (λ) :=
w(λ)
2π i

N∑
j=1

∫
Γj

C f
j dξ

w+(ξ )(ξ − λ)
= λ + f0 + O(1/λ), (A.8)

g(λ) :=
w(λ)
2π i

N∑
j=1

∫
Γj

Cg
j dξ

w+(ξ )(ξ − λ)
= 2λ2

+ g0 + O(1/λ) (A.9)

roposition 1 ([32]). Given {λj}
N
0 with Im λj > 0 and {φj}

N
0 with φj ∈ [0, 2π ), the N-genus solution q(x, t) of the NLS equation

obtained from the solution of the RH problem (A.1)–(A.3) can also be expressed by

q(x, t) = 2i[Φ̂1]12(x, t)e2if0x+2ig0t , (A.10)

where Φ̂1 enters the large-λ development

Φ̂(x, t, λ) = I +
Φ̂1(x, t)

λ
+ . . . (A.11)

f the solution Φ̂(x, t, λ) of the following RH problem: find Φ̂(x, t, λ) analytic in C \ Γ and satisfying the jump conditions:

Φ̂+(x, t, λ) = Φ̂−(x, t, λ)Ĵj(x, t), λ ∈ Γj, j = 0, . . . , N, (A.12)

with

Ĵj(x, t) =

(
0 ie−i(φj+C f

j x+Cg
j t)

iei(φj+C f
j x+Cg

j t) 0

)
(A.13)

and the normalization condition

Φ̂(x, t, λ) = I + O(1/λ), λ → ∞. (A.14)

Here C f
0 = Cg

0 = 0, whereas the constants f0 and g0 in (A.10) and C f
j , C

g
j , j = 1, . . . ,N in (A.13) are determined by {λj}

N
0 and

{φj}
N
0 via (A.6)–(A.9).

Remark 2. Ψ (x, t, λ) and Φ̂(x, t, λ) are related as follows:

Ψ (x, t, λ) = e(if0x+ig0t)σ3Φ̂(x, t, λ)e(i(λ−f (λ))x+i(2λ2−g(λ))t)σ3 , (A.15)

where σ3 =

(
1 0
0 −1

)
. Here, the exponential in (A.15) presents an appropriate realization of the ‘‘g-function mechanism’’,

which allows reducing the original RH problem to that characterized by jump data independent of λ (on each part Γj of
the contour) combined with the standard normalization at infinity (which is independent of λ as well).

Remark 3. It is the RH problem (A.12)–(A.14) that can be solved explicitly in terms of the theta functions of the N-genus
Riemann surface associated with w(λ) (A.5) and characterized by the branch points λj and λ∗

j , j = 0, . . . ,N .

Remark 4. The parameters x and t enter the jump matrix (A.13) and thus the solution Φ̂ through the linear expressions

φ̃j(x, t) := φj + C f
j x + Cg

j t. (A.16)

Consequently (and taking into account (A.10)), the mapping φj|t=0 ↦→ φj|t=T = φj|t=0 + Cg
j T − 2g0T represents the

evolution, in spectral terms, of a particular N-genus solution, which provides simple means to retrieve the original
12
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parameters φj (associated with the transmitter, at t = 0) given these parameters at the receiver (at t = T ). Particularly,
if all C f

j together with f0 turn to be commensurable, then the underlying solution of the NLS equation is periodic in x.
Similarly, in t .
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