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We consider the information channel described by the Schrödinger equation with additive Gaussian noise. We
introduce the model of the input signal and the model of the output signal receiver. For this channel, using per-
turbation theory for the small nonlinearity parameter, we calculate the first three terms of the expansion of the
conditional probability density function in the nonlinearity parameter. At a large signal-to-noise power ratio,
we calculate the conditional entropy, output signal entropy, and mutual information in the leading and next-to-
leading order in the nonlinearity parameter and in the leading order in the parameter 1/SNR. Using the mutual
information, we find the optimal input signal distribution and channel capacity in the leading and next-to-leading
order in the nonlinearity parameter. Finally, we present the method of the construction of the input signal with the
optimal statistics for the given shape of the signal. ©2022Optica PublishingGroup
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1. INTRODUCTION

Nowadays, fiber-optic communication channels are actively
developed. That is why it is important to know their maxi-
mum information transmission rate, i.e., channel capacity.
For small powers of the outcoming signal, these channels are
well described by linear models. For the powers in question,
the capacity of the noisy channel was found analytically in
Shannon’s famous papers [1,2]:

C ∝ log(1+ SNR), (1)

where SNR= P/N is the signal-to-noise power ratio, P is the
average input signal power, and N is the noise power. As one
can see from this relation, to increase the channel capacity with
the noise power being fixed, it is necessary to increase the signal
power. However, as the signal power increases, the nonlinear
effects become more important. In this case, a simple expression
for the capacity of this noisy nonlinear channel is unknown.
The reason is that the expression should take into account all
details of the mathematical model of the nonlinear channel.
This model implies the following components: the input signal
model, i.e., the method for encoding incoming information,
the physical signal propagation model across the fiber wire,
the receiver model (i.e., signal detection features, frequency
filtering), and the procedure of signal post-processing. Thus,
for different channel models, the expressions for capacity will
also be different even for some matching components. It is very

difficult to find an explicit expression for capacity even for a
specific (and often highly simplified) model of a nonlinear com-
munication channel. A more realistic problem for such channels
is to find the upper or lower bounds for the capacity. For exam-
ple, in the case of commonly used models involving the signal
propagation governed by the nonlinear Schrödinger equation
(NLSE) with additive white Gaussian noise (see Refs. [3–6] and
references therein), an expression for capacity has not yet been
obtained. However, in the case when a small parameter is present
in the model, often it is possible to invoke the perturbation
theory for this parameter if the zero-parameter model turns out
to be solvable. For instance, in the case of low noise power in
the channel (i.e., for a large SNR parameter), one can develop
an analog of the semiclassical approach in quantum mechanics
[7]. Further, in the case when the coefficient of the second dis-
persion in the channel is small, it is also possible to construct the
perturbation theory based on this parameter [8–10], since the
zero-parameter model is well developed [4,11–18]. Finally, in
the case of moderate input power, it is also possible to develop
the perturbation theory for the Kerr nonlinearity parameter
of the fiber [19]. In different approaches, the capacity for an
optical fiber channel with nonzero dispersion and Kerr nonlin-
earity has been studied both analytically and numerically; see
Refs. [20–27] and references therein.

In the present paper, we focus on the study of the nonlinear
channel described by NLSE with additive Gaussian noise using
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the perturbation theory in the small parameter of Kerr non-
linearity and large SNR. To this end, we consistently build the
model of the input signal X (t), we study the impact of the spec-
tral noise width on the output signal Y (t) (i.e., the raw signal in
the receiving point), and we investigate the influence of the sig-
nal detection procedure in the receiver and the post-processing,
i.e., the procedure of input data extraction from the received
signal Y (t). We carry out all our calculations in the leading and
next-to-leading orders in the Kerr nonlinearity parameter.

To study the mutual information, we use the representa-
tion for the conditional probability density function (PDF)
P [Y (t)|X (t)], i.e., the probability density to get the output
signal Y (t), if the input signal is X (t), through the path-integral
[7]. This representation for P [Y (t)|X (t)] is especially con-
venient to use the perturbation theory. Generally speaking, the
function spaces of the input signal X (t) and output signal Y (t)
are infinite-dimensional. However, information is transmitted
using some finite set pulses of a certain shape, spread in either
time or frequency space. For example, the input signal X (t) can
be constructed as follows:

X (t)=
M∑

k=−M

Ck s (t − kT0). (2)

Here s (t) is a fixed envelope function of time, Ck are complex
variables that carry information about the input signal, and
T0 is a time interval between two successive pulses. The prob-
lem of information transfer is reduced to recover coefficients
{C−M, . . . ,CM} from the signal Y (t) received at the output.
To find the informational characteristics of the communication
channel, we need to reduce density functional P [Y (t)|X (t)] to
functional P [{C̃}|{C}], i.e., the conditional probability density
to get a set of coefficients {C̃k}, if the input signal is encrypted by
coefficients {Ck}. Functional P [{C̃}|{C}] depends on both the
physical laws of signal propagation along the communication
channel and the detection procedure with post-processing of the
signal. Generally, functional P [{C̃}|{C}] cannot be reduced to a
factorized form,

P [{C̃}|{C}] =
M∏

k=−M

P (k)
[C̃k |Ck], (3)

due to dispersion effects in the first place. This means that we
deal with a communication channel with memory (commonly,
an infinite one). Fiber optical channels with memory were
previously considered in many papers; see, for example, Ref.
[26].

In our work, we calculate density P [{C̃}|{C}] for a nonlin-
ear fiber optic communication channel, in which the signal
propagation is governed by the NLSE with additive Gaussian
noise of finite spectral width. Our model also includes a receiver
model and post-processing procedure of the extraction of
coefficients {C̃k} from the detected signal Y (t). Density func-
tional P [Y (t)|X (t)] as well as density P [{C̃}|{C}] were found
with the use of two different methods. The first method is
based on direct calculation of the path-integral representing
P [Y (t)|X (t)] via the effective two-dimensional action [7] in
the leading and next-to-leading orders in parameter 1/SNR

and in the parameter of Kerr nonlinearity, correspondingly.
The second method is based on independent calculation of the
correlators of the solution of the NLSE with additive Gaussian
noise for a fixed input signal X (t).

Using the found density P [{C̃}|{C}], we calculated the
entropy of the output signal and conditional entropy. It allowed
us to find mutual information in leading and next-to-leading
orders in parameter 1/SNR and in the parameter of Kerr nonlin-
earity. Then we found the extremum of the mutual information
and calculated the probability density of the input signal
Popt[{C}] that delivers this extremum. We demonstrated that
in the first non-vanishing order in Kerr nonlinearity, proba-
bility density Popt[{C}] is not factorized, i.e., already in the
leading order in the nonlinearity parameter, the fiber optic
channel is the channel with memory. The optimal distribution
Popt[{C}] allowed us to construct conditional probabilities
Popt[Ck |C−M, . . . ,Ck−1,Ck+1, . . . ,CM], which, in turn, are
needed to construct the input signal with the given statistics
Popt[{C}]. Using the explicit form of distribution Popt[{C}],
we demonstrated that the difference between the mutual
information found using the optimal statistics and the mutual
information calculated using Gaussian distribution occurs only
in the fourth order in the small parameter of Kerr nonlinearity.
To demonstrate our analytical results, we performed numeri-
cal calculations of mutual information, optimal distribution
function, and correlators of the output signal for various param-
eters of the second dispersion, as well as for pulse sequences of
different lengths.

The paper is organized as follows. The next section is ded-
icated to the channel model description: we describe the
structure of the input signal, then introduce the procedures of
receiving and post-processing. We introduce the conditional
PDF in the case of small Kerr nonlinearity in the third section.
In this section, we propose two approaches to the perturbative
calculation of the conditional PDF. The details of this calcu-
lation are presented in Supplement 1. The fourth section is
devoted to the derivation of mutual information. The resulting
expression for mutual information uses tensor notations for
the coefficients calculated in detail in Supplement 1. These
universal coefficients allow us to present the optimal input signal
distribution in the fifth section. In this section, we present the
theoretical and numerical results. We present the statistical
method of the construction of the optimal input signal in the
sixth section: we describe the correlations of input symbols
resulting in optimal distribution. The conclusion finalizes our
consideration of the optimal input signal distribution for the
nonlinear channel with small Kerr nonlinearity.

2. MODEL OF THE CHANNEL

Let us start the consideration from the input signal
representation.

A. Input Signal Model

In our model the input signal X (t)has the following form:

X (t)=
M∑

k=−M

Ck s (t − kT0). (4)
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Thus, the signal is the sequence of 2M + 1 pulses of the shape
s (t) spaced by time T0. The complex coefficients Ck carry the
transmitted information. We chose the pulse envelope s (t) pos-
sessing two properties. The first property is the normalization
condition: ∫

∞

−∞

dt
T0

s 2(t)= 1. (5)

The second property is the orthogonality condition,∫
∞

−∞

dt
T0

s (t − kT0)s (t −mT0)= δkm, (6)

where δkm is the Kronecker δ-symbol. Below, we will consider
two different types of function s (t). The first one is the sinc-type
function,

s (t)= sinc [Wt/2]= 2
sin(Wt/2)

Wt
, (7)

where W = 2π/T0 is the input signal bandwidth. Note that
these envelopes are overlapping; however, properties (6) and (7)
are fulfilled. We focus our attention in the following calculations
primarily on the sinc-type of envelope.

The second type is the Gaussian function,

s (t)=

√
T0

τ
√
π

exp

(
−

t2

2τ 2

)
, (8)

where τ is characteristic signal duration. Below, we imply that
τ � T0. It is parameter τ that determines the frequency band-
width of the input signal. So the orthogonality condition (6) can
be satisfied only approximately with any specified precision by
choosing the value of time τ .

Complex coefficients Ck are distributed with PDF PX [{C}].
Below, we refer function PX [{C}] as the input signal PDF,
where {C} = {C−M,C−M+1, . . . ,CM} is the ordered set of
coefficients Ck . In our model, we consider the continuous PDF
PX [{C}]normalized by the condition∫ (

M∏
k=−M

d2Ck

)
PX [{C}] = 1, (9)

where d2Ck = dReCkdImCk . We also restrict our consid-
eration by the input signal X (t) with the fixed averaged
power P :

P =
∫ (

M∏
k=−M

d2Ck

)
PX [{C}]

1

2M + 1

∫
∞

−∞

dt
T0
|X (t)|2.

(10)

B. Signal Propagation Model

In our model, the propagation of the signalψ(z, t) is described
by the NLSE with additive Gaussian noise (see Refs. [3–6]):

∂zψ(z, t)+ iβ∂2
t ψ(z, t)− iγ |ψ(z, t)|2ψ(z, t)= η(z, t),

(11)
with the input condition ψ(0, t)= X (t). In Eq. (11), β is
the second dispersion coefficient, γ is the Kerr nonlinearity

coefficient, and η(z, t) is an additive complex noise with zero
mean:

〈η(z, t)〉η = 0. (12)

Here 〈. . .〉η is the averaging over the realization of noise η(z, t).
We also imply that the correlation function 〈η(z, t)η̄(z′, t ′)〉η
has the following form:

〈η(z, t)η̄(z′, t ′)〉η = Q
W̃
2π

sinc

(
W̃(t − t ′)

2

)
δ(z− z′).

(13)
Here and below the bar means complex conjugation. Parameter
Q in Eq. (13) is a power of noise η(z, t) per unit length and per
unit frequency. Parameter W̃ is the bandwidth of the noise. Note

that limW̃→∞
W̃
2π sinc( W̃(t−t ′)

2 )= δ(t − t ′).
Below, we imply that noise bandwidth W̃ is much greater

than bandwidth W of input signal X (t) and much greater than
bandwidth W ′ of the solution 8(z= L, t) of Eq. (11) with
zero noise. Here L is the signal propagation distance. So in our
consideration, we set

W̃�W ′ >W . (14)

The solution 8(z, t) of Eq. (11) with zero noise and with the
input boundary condition 8(z= 0, t)= X (t) will play an
important role in our further consideration. Details of the per-
turbative calculation of the solution 8(z, t) and its properties
are presented in Subsection 2 of Supplement 1.

C. Receiver Model and Post-Processing

To recover the transmitted information, we perform the pro-
cedure of output signal detection at z= L . Our receiver detects
noisy signal ψ(L, t) [solution of Eq. (11) with noise], then it
filters the detected signal in the frequency domain. After that, we
remove the phase incursion e iβω2 L related with the second dis-
persion coefficient and obtain signal Yd (t). So in the frequency
domain, we finally obtain detected signal Yd (ω):

Yd (ω)= e−iβω2 Lθ(Wd/2− |ω|)
∫
∞

−∞

dte iωtψ(L, t), (15)

where Wd is the frequency bandwidth of our receiver. In our
model, bandwidth Wd is much less than W̃ as well as in Eq. (14).
Also, it is reasonable to consider the receiver with bandwidth
Wd ≥W , as it is our case.

To obtain the information, we should recover coefficients {C}
from signal Yd (ω). To this aim, we project signal Yd (t) on shape
functions s (t − kT0):

C̃k =
1

T0

∫
∞

−∞

dt s (t − kT0)Yd (t)

=
1

2πT0

∫
W

dωs (k)(ω)Yd (ω), (16)

where s (k)(ω) is the Fourier transform of function s (t − kT0):

s (k)(ω)=
∫
∞

−∞

dt s (t − kT0)e iωt
= e iωkT0 s (ω). (17)
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Due to the noise and nonlinearity of Eq. (11), the recovered
coefficient C̃k does not coincide with coefficient Ck . However,
in the case of zero nonlinearity and zero noise, our detection
procedure allows us to recover all coefficients {C}.

The informational characteristics of the channel are described
by the conditional PDF P [{C̃}|{C}] to receive the sequence {C̃}
for input sequence {C}. So we have to find the conditional PDF
P [{C̃}|{C}].

3. CONDITIONAL PDF P[{C̃}|{C}]

In this section, we find the conditional PDF P [{C̃}|{C}] using
two approaches. The first one is based on the result of Ref.
[7] where the conditional PDF P [Y (ω)|X (ω)] to receive the
output signal Y (ω) for the input signal X (ω) is represented
in the form of path-integral. The second approach is based on
calculation of the output signal correlators in the leading and
next-to-leading orders in parameter Q. Let us briefly discuss the
first and second approaches.

The base of the path-integral approach is the representation
for the conditional PDF P [Y (ω)|X (ω)] in the frequency
domain (see Ref. [7]):

P [Y (ω)|X (ω)] =
∫ ψ(L,ω)=Y (ω)

ψ(0,ω)=X (ω)
Dψ(z, ω) exp

[
−

S[ψ]
Q

]
,

(18)
where the effective action S[ψ] reads

S[ψ] =
∫ L

0
dz
∫

W̃

dω
2π

∣∣∂zψ(z, ω)− iβω2ψ(z, ω)

− iγ
∫

W̃

dω1dω2dω3

(2π)2
δ(ω1 +ω2 −ω3 −ω)

× ψ(z, ω1)ψ(z, ω2)ψ̄(z, ω3)
∣∣2 , (19)

and the integration measure Dψ(z, ω) is defined
in such a way to obey the normalization condition∫
DY (ω)P [Y (ω)|X (ω)] = 1; for details, see Ref. [7]. As

mentioned above, function P [Y (ω)|X (ω)] contains redundant
degrees of freedom, since the receiver does not detect all frequen-
cies of the output signal Y (ω). That is why we have to introduce
the conditional PDF Pd [Yd (ω)|X (ω)], which is the result of the
integration of function P [Y (ω)|X (ω)] over redundant degrees
of freedom Y (ω), |ω|>Wd/2:

Pd [Yd (ω)|X (ω)] =
∫
[DY (ω)]|ω|>Wd /2 P [Y (ω)|X (ω)].

(20)
So function Pd [Yd (ω)|X (ω)] contains only detectable degrees
of freedom Yd (ω), |ω|<Wd/2; see Eq. (15). If one knows
function Pd [Yd (ω)|X (ω)], it is easy to calculate an arbitrary

correlator 〈C̃k1 . . .
¯̃C kN 〉, where

〈C̃k1 . . .
¯̃C kN 〉 =

∫
DYd (ω)Pd [Yd (ω)|X (ω)]

¯̃C k1 . . .
¯̃C kN ,

(21)
where C̃k is defined in Eq. (16). For our purposes, we should
know correlators in the leading order in noise parameter Q, and
up to second order in nonlinearity parameter γ . Knowledge

of these correlators allows us to construct the conditional
PDF P [{C̃}|{C}] that reproduces all correlators with nec-
essary accuracy. Details of this calculation are presented in
Supplement 1.

Note that the parameter γ has the dimension, however,
all terms of the expansion in the parameter γ of any physical
quantity have the same dimension. Therefore, when we write
“expansion in the parameter γ ” we imply asymptotical expan-
sion in the dimensionless parameter γ L P , where P is the
averaged input signal power.

The second approach allows us to calculate the same corre-
lators (21) by solving Eq. (11) up to second order in parameter
γ and up to first order in noise parameter Q (i.e., the second
order in functionη(z, t)). We substitute the solutionψ(L, t) of
Eq. (11) into Eq. (15); then the result of Eq. (15) is substituted
into Eq. (16), and we arrive at the expression for the measured
coefficient C̃k . Note that, since the solution ψ(L, t) depends
on the noise, coefficient C̃k depends on noise function η(z, t)

as well. To calculate any correlator 〈C̃k1 . . .
¯̃C kN 〉, we should

average the product C̃k1 . . .
¯̃C kN over the noise realizations using

Eqs. (12) and (13). As it should be, the results for correlators

〈C̃k1 . . .
¯̃C kN 〉 are the same for both approaches. The results for

the correlators are presented in Subsection 4 of Supplement 1.
Using the obtained correlators, we build the conditional PDF

P [{C̃}|{C}]:

P [{C̃}|{C}] =3c exp

− T0

QL

M∑
k,k′=−M

[
δC̃k′ F k′,kδC̃k

+ δC̃k′Gk′,kδC̃k + δC̃k′Hk′,kδC̃k

]  ,(22)
where F k′,k

= F̄ k,k′
= δk′,k

+ F k′,k
2 , Hk′,k

= Hk,k′
= Hk′,k

1 +

Hk′,k
2 , and Gk′,k

= H̄k′,k
= Gk′,k

1 + Gk′,k
2 are dimensionless

coefficients with k, k′ =−M, . . . , M. Indices 1 and 2 indicate
terms proportional to γ and γ 2, respectively. Quantity δC̃k is
defined as follows:

δC̃k = C̃k − 〈C̃k〉. (23)

Here the correlator 〈C̃k〉 is a known function of {C}; see Eq.
(S33). Note that quantity 〈C̃k〉 contains the bandwidth of
noise W̃ .

The dimensionless coefficients can be presented through pair
correlators as

F k′,k
= F̄ k,k′

= δk′,k + F k′,k
2 ,

F k′,k
2 = 4

M∑
m=−M

H̄k′,m
1 Hm,k

1 − γ 2 T0

2QL
∂2

∂γ 2
〈δC̃k′δC̃k〉|γ=0,

(24)

where

Hm,k
1 =−γ

T0

2QL
∂

∂γ
〈δC̃kδC̃m〉|γ=0,

Hm,k
2 =−γ 2 T0

4QL
∂2

∂γ 2
〈δC̃kδC̃m〉|γ=0. (25)
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All needed correlators 〈C̃k〉, 〈δC̃kδC̃m〉, 〈δC̃k′δC̃k〉 are pre-
sented explicitly in Supplement 1, Eqs. (S33), (S34), and (D35).
The normalization factor3c reads up toγ 2 order as

3c =

(
T0

πQL

)2M+1
[
1+

(
M∑

k=−M

F k,k
2 − 2

M∑
k,k′=−M

Gk,k′

1 Hk′,k
1

)]
.

(26)
At first sight, the found PDF (22) has a Gaussian form, and it
might be suggested that we have reduced the channel to the
linear one. But it is not the case, since the dimensionless coeffi-
cients depend nonlinearly on the input signal coefficients {C}.
The Gaussian structure is the consequence of the consideration
of the problem in the leading order in parameter Q.

Now we turn to the consideration of channel entropies H[C̃ ]
and H[{C̃}|{C}], which are necessary for mutual information
calculation.

4. MUTUAL INFORMATION

The conditional entropy reads

H[{C̃}|{C}] =−
∫

dCdC̃ PX [{C}]P [{C̃}|{C}]

× log P [{C̃}|{C}], (27)

where

dC =
M∏

k=−M

dReCkdImCk, dC̃ =
M∏

k=−M

dReC̃kdImC̃k .

(28)
To calculate the conditional entropy H[{C̃}|{C}], we sub-

stitute the conditional PDF (22) into expression (27), then
perform the integration over {C̃} and obtain

H[{C̃}|{C}] =−
∫

dC PX [{C}]
(
log3c − (2M + 1)

)
.

(29)
To perform the integration in Eq. (29), we expand log3c up to
γ 2 terms then integrate over {C} and arrive at

H[{C̃}|{C}] = (2M + 1) log (πe QL/T0)

− γ 2L2 J s 1,s 2;s 3,s 4
3

∫
dC PX [{C}]Cs 1Cs 2C̄s 3C̄s 4 .

(30)

To obtain Eq. (30), we have used the normalization condition∫
dC PX [{C}] = 1. (31)

In Eq. (30) and below, unless otherwise stated, we imply that
there is summation over the repeated indices. The explicit
expression for coefficients J s 1,s 2;s 3,s 4

3 is cumbersome, and
therefore we present it in Supplement 1, Eq. (S43).

Now we proceed to calculation of the output signal entropy:

H[{C̃}] =−
∫

dC̃ Pout[{C̃}] log Pout[{C̃}], (32)

where the output signal distribution reads

Pout[{C̃}] =
∫

dC P [{C̃}|{C}]PX [{C}]. (33)

To calculate the PDF of the output signal, we change the integra-
tion variables in Eq. (33) from Ck to δC̃k = C̃k − 〈C̃k〉.

Since in our model the average noise power is much less
than the average input signal power (QL/T0� P ), we cal-
culate the integral (33) using the Laplace method [28,29] and
obtain the following result in the leading order in parameter
1/SNR= QL/(T0 P ):

Pout[{C̃}] ≈

∣∣∣∣ ∂(C , C̄)

∂(C̃ (0), C̃ (0))

∣∣∣∣ PX [{F }], (34)

where C̃ (0)
k is the known function of Ck [see Eq. (S8) in

Supplement 1]:

C̃ (0)
k [{C}] =Ck + iγ LCk1Ck2C̄k3a k1,k2;k3,k

1

− γ 2L2Cm1Cm2Cm3C̄m4C̄m5am1,m2,m3;m4,m5,k
2 ,

(35)

and F [{C̃}] is the solution of the equation

C̃k = C̃ (0)
k [{F }]. (36)

Solution F of this equation can be found using perturbation
theory in parameter γ . One can see that the distribution of
the output signal coincides with the input signal distribution

PX [{F }] up to the Jacobian determinant | ∂(C ,C̄)
∂(C̃ (0),C̃ (0))

|. It allows

us to calculate the output signal entropy in the leading order
in parameter Q, or 1/SNR= QL/(T0 P ) in dimensionless
quantities.

Substituting the result (34) into the expression for the output
signal entropy (32), we perform the integration over C̃ and
arrive at

H[{C̃}] = H[{C}] +
∫

dC PX [{C}] log

∣∣∣∣∣∂(C̃ (0), C̃ (0))

∂(C , C̄)

∣∣∣∣∣ ,
(37)

where H[{C}] is the input signal entropy:

H[{C}] =−
∫

dC PX [{C}] log PX [{C}]. (38)

Therefore, to find the output entropy, we should calculate
the logarithm of the Jacobian determinant in Eq. (37). The
straightforward calculation in the first non-vanishing order in
parameterγ leads to the following result:

log

∣∣∣∣∣∂(C̃ (0), C̃ (0))

∂(C , C̄)

∣∣∣∣∣= γ 2L2Cs 1Cs 2C̄s 3C̄s 4 J s 1,s 2;s 3,s 4 , (39)

where dimensionless coefficients J s 1,s 2;s 3,s 4 are given by Eq.
(S16).

To calculate the mutual information, we subtract the
conditional entropy (30) from the output signal entropy
(37):

https://doi.org/10.6084/m9.figshare.18857870
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IPX = H[{C̃}] − H[{C̃}|{C}]

=−(2M + 1) log[πe QL/T0] −

∫
dC PX [{C}] log PX [{C}]

+ γ 2 L2 J s 1,s 2;s 3,s 4
I

∫
dC PX [{C}]Cs 1 Cs 2 C̄s 3 C̄s 4 ,

(40)

where coefficients

J s 1,s 2;s 3,s 4
I = J s 1,s 2;s 3,s 4 + J s 1,s 2;s 3,s 4

3 . (41)

These two contributions to coefficients J s 1,s 2;s 3,s 4
I are presented

explicitly in Eqs. (S16) and (S42). The method of the numerical
calculation of these coefficients is presented in Supplement 1.
The first two terms in the mutual information (40) coincide
with that for linear channel (γ = 0). The third term describes
the contribution of the Kerr nonlinearity effects. One can see
that the first nonlinear correction to the mutual information is
of the order of γ 2. Since coefficients J s 1,s 2;s 3,s 4

I depend on the
envelope function s (t), the mutual information also depends
on this envelope function. It is worth noting that mutual infor-
mation depends on the bandwidth of the input signal W via
coefficients J s 1,s 2;s 3,s 4

I and does not depend on detector band-
width Wd . The reason for this is that bandwidth Wd of the
receiver is greater than or equal to the bandwidth of the input
signal W : Wd ≥W . Therefore, all integrals over frequency in the
interval [−Wd/2,Wd/2] with envelope s (k)(ω) are reduced to
integrals over the frequency interval [−W/2,W/2] determined
by function s (ω).

5. OPTIMAL INPUT SIGNAL DISTRIBUTION

Now we can calculate the optimal input signal distribution
Popt[{C}] that maximizes mutual information (40). The
optimal distribution Popt[{C}] obeys the normalization
condition, ∫

dC Popt[{C}] = 1, (42)

and the condition of the fixed average power,∫
dC Popt[{C}]

1

2M + 1

M∑
k=−M

|Ck |
2
= P . (43)

To find Popt[{C}], we solve the variational problem
δK[PX ] = 0 for the functional

K[PX ] = IPX − λ1

(∫
DC PX [{C}] − 1

)

− λ2

(∫
DC PX [{C}]

1

2M + 1

M∑
k=−M

|Ck |
2
− P

)
,

(44)

where λ1,2 are the Lagrange multipliers, related with restrictions
(42) and (43). The solution of the variational problem in the
first and second orders in parameter γ and in the leading order
in parameter 1/SNR has the form

Popt[{C}] = P (0)
[{C}]

{
1+ γ 2L2 J s 1,s 2;s 3,s 4

I Cs 1Cs 2C̄s 3C̄s 4

+ (γ L P )2(J r ,s ;r ,s
I + J r ,s ;s ,r

I )

×

(
1−

2

P (2M + 1)

M∑
k=−M

|Ck |
2

)}
,

(45)

where P (0)
[{C}] is the optimal input signal distribution for the

channel with zero nonlinearity parameterγ :

P (0)
[{C}] =

(
1

π P

)2M+1

exp

[
−

1

P

M∑
k=−M

|Ck |
2

]
. (46)

One can see that P (0)
[{C}] is the Gaussian distribution, whereas

distribution (45) is not Gaussian due to the nonlinear correc-
tions. Thus, Popt[{C}] leads to nonzero correlations between
coefficients Ck with different k.

Note that the found distribution Popt[{C}] is not the exact
optimal input signal distribution for the channel described by
the NLSE, since Popt[{C}] is calculated for the given envelope
s (t) and only up to γ 2 terms. Nevertheless, Popt[{C}] takes
into account the first nonzero nonlinear corrections that lead to
nontrivial correlations of input coefficients Ck .

To find the maximal value of mutual information (40), we
substitute Popt[{C}] (45) into expression (40), perform the
integration over C , and obtain

IPopt = (2M + 1)

(
log

[
P T0

QL

]
+ (γ L P )2 J6

)
, (47)

where

J6 =
J r ,s ;r ,s

I + J r ,s ;s ,r
I

2M + 1
. (48)

One can see that the mutual information is proportional to
the number of the coefficients Ck , i.e., 2M + 1. The first term
in the second brackets in Eq. (47) coincides with Shannon’s
result for the linear channel at large SNR. The second term is the
first nonzero nonlinear correction. Below, we will demonstrate
numerically that quantity J6 depends weakly on 2M + 1.

We emphasize that calculation of mutual information (40)
using Gaussian distribution (46) leads to the result IP (0) , which
coincides with the result (47). It means that in this order in
parameter γ , both distributions give the same result for the
mutual information. Thus, one might think that it does not
matter what distribution, the optimal, see Eq. (45), or the
Gaussian, see Eq. (46), is used for the calculation of mutual
information. However, the optimal input signal distribution
(45) leads to mutual information IPopt , which is greater than
IP (0) in the higher orders in nonlinearity parameter γ . To
demonstrate that we have calculated the difference between
IPopt and IP (0) in the leading nonzero order in the nonlinearity
parameterγ , we obtain

IPopt − IP (0) =
(γ L P )4

2
(〈A2
〉P (0) − 〈A〉

2
P (0) −

4

2M + 1
〈A〉2P (0)),

(49)
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where

A=
J s 1,s 2;s 3,s 4

I

P 2
Cs 1Cs 2C̄s 3C̄s 4 , (50)

and here we introduce the averaging over the zero-order
distribution [see Eq. (46)]:

〈(. . .)〉P (0) =

∫
dC P (0)

[{C}](. . .). (51)

Performing the averaging in Eq. (49), we arrive at the following
result:

IPopt − IP (0) = 2(γ L P )4(4 J̃ a ,b;b,d
I J̃ d ,k;a ,k

I + J̃ a ,b;c ,d
I J̃ c ,d;a ,b

I

−
4

2M + 1
J̃ a ,b;b,a

I J̃ c ,d;d ,c
I ),

(52)

where

J̃ a ,b;c ,d
I =

(
J a ,b;c ,d

I + J b,a;c ,d
I + J a ,b;d ,c

I + J b,a;d ,c
I

)
/4.

(53)
We have checked numerically that the right-hand side of
Eq. (52) is positive for all values of the parameter β which are
considered in the present paper.

Below, we present results for the mutual information for dif-
ferent envelopes s (t) and for different values of dispersion.

A. Zero Dispersion Case

Direct calculation of mutual information (47) in the case of zero
dispersion and non-overlapping envelopes s (t), obeying condi-
tion (6) [see, for instance, envelope (8)], gives the result

IPopt

2M + 1

∣∣∣∣
β=0

= log

[
P T0

QL

]
− (γ L P )2

22N6 − 21N2
4

3
,

(54)
where Nλ is the integral

Nλ =
1

T0

∫
∞

−∞

dt s λ(t). (55)

We note that 22N6 − 21N2
4 > 0 due to Cauchy–Schwarz–

Bunyakovsky inequality. For the case of a rectangular pulse
s (t)= θ(T0/2− |t|) (which corresponds to the case of the
per-sample model; see [15]), Eq. (54) passes to

IPopt

2M + 1

∣∣∣∣
β=0

= log

[
P T0

QL

]
−
(γ L P )2

3
. (56)

This result coincides with Eq. (53) in Ref. [15].
The difference (49) for the case ofβ = 0 and non-overlapping

envelopes s (t) [see Eq. (8)] has the form

IPopt − IP (0)
∣∣
β=0
= (2M + 1)(γ L P )4

(22N6 − 21N2
4 )

2

18
.

(57)
One can see that the difference is positive and in agreement with
the general results of Ref. [15], which is valid for arbitrary non-
linearity.

For the case of the envelope of the sinc form,

s (t)= sinc (Wt/2) , (58)

we obtain the following result for the maximum value of mutual
information (47) (see details in Supplement 1, Subsection 3):

IPopt

(2M + 1)
= log

[
P T0

QL

]
+
(γ L P )2

2M + 1

{
−

22

3

∫
+∞

−∞

dτ S6(τ, τ )

+

∫
+∞

−∞

dτ1

∫
+∞

−∞

dτ2(3S8(τ1, τ2)

+ 4S4(τ1, τ2)S2(τ1, τ1)S2(τ2, τ2))

}
,

(59)

where

S2(τ1, τ2)=

M∑
r=−M

sinc(π(τ1 + r ))sinc(π(τ2 + r )),

S2(τ, τ )=

M∑
r=−M

sinc2(π(τ + r )). (60)

The numerical result for quantity (59) has the form

IPopt

(2M + 1)
= log

[
P T0

QL

]
− 1.26(γ L P )2, (61)

where the coefficient at nonlinearity factor (γ L P )2 weakly
depends on parameter M.

B. Nonzero Dispersion Case

Here we present results for the nonzero dispersion parameter.
For this consideration, we choose the following parameters
of the channel: β = 2× 10−23sec2/km, propagation length
is equal to L = 800 km, with different values of input signal
bandwidth W . The dispersion effects can be described by
dimensionless parameter β̃:

β̃ = βLW2/2. (62)

Below, we present numerical results for the mutual information
for various values of β̃. Figure 1 presents the dependence of
quantity J6 [see Eq. (48)] on different values of parameter β̃
for M = 5; see Eq. (47). We checked that quantity J6 weakly
depends on M for M > 5. The points in Fig. 1 were obtained
by two different numerical approaches see Supplement 1. Both
approaches lead to the same results, and it is the guarantee of
correctness of the numerical calculations.

One can see that J6 has the minimum at β̃ = 0. It means that
nonlinear correction to the mutual information [see Eq. (47)]
has the maximum absolute value at β̃ = 0. At small β̃, quan-
tity J6 demonstrates quadratic dependence on the dispersion
parameter; see the inset in Fig. 1. At large β̃, quantity J6 goes to

zero. Our estimations result in the dependence J6 ∼
log β̃
β̃

for

large β̃; see Ref. [30]. Therefore, nonlinear correction decreases
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Fig. 1. Dependence of J6 on dispersion parameter β̃ for M = 5. In
the inset, we plot J6 for the region of small β̃.

with increasing β̃, as (γ L P )2/β̃. It means that the effective

nonlinear parameter at large β̃ is notγ L P , butγ L P/
√
β̃.

6. CONSTRUCTION OF THE INPUT SIGNALS

To increase the mutual information, we should be able to create
signals that obey the optimal input signal distribution (45). To
create the input sequence that has statistics determined by the
PDF Popt[{C}], we represent this PDF in the form [31]

Popt[{C}] = Popt[Ci1 ]Popt[Ci2 |Ci1 ]Popt[Ci3 |Ci2 ,Ci1 ]

× . . .× Popt[Ci2M+1 |Ci2M , . . .Ci2 ,Ci1 ], (63)

where

Popt[Ci1 ] =

∫
dCi2 . . . dCi2M+1 Popt[{C}], (64)

Popt[Ci2 |Ci1 ] =

∫
dCi3 . . . dCi2M+1 Popt[{C}]

Popt[Ci1 ]
, (65)

Popt[Ci3 |Ci2 ,Ci1 ] =

∫
dCi4 . . . dCi2M+1 Popt[{C}]

Popt[Ci1 ] × Popt[Ci2 |Ci1 ]
, (66)

Popt[Ci2M |Ci2M−1 , . . .Ci2 ,Ci1 ]

=

∫
dCi2M+1 Popt[{C}]

Popt[Ci1 ] × . . .× Popt[Ci2M−1 |Ci2M−2 , . . . ,Ci1 ]
, (67)

Popt[Ci2M+1 |Ci2M , . . .Ci2 ,Ci1 ]

=
Popt[{C}]

Popt[Ci1 ] × . . .× Popt[Ci2M |Ci2M−1 , . . . ,Ci1 ]
. (68)

Using Eqs. (64)–(68), we can build sequences that have the
necessary statistics in the following way. First, we choose the
first element C1 of the sequence distributed with PDF (64).
The statistics of the second element C2 depends on the value
of C1, and should be distributed with PDF (65), etc. In our
approximation (γ 2 order of the calculation), the optimal PDF
Popt[{C}] contains the fourth order polynomial in coefficients
Ck . So we have two nontrivial correlators, 〈CkC̄m〉Popt and
〈CkCq C̄mC̄ p〉Popt , which determine all higher order correlators.

For a very long sequence, the correlation between the first and
last coefficients should be neglectable. To find the characteristic

length |k −m| of the correlation between elements Ck and Cm

of the input sequence, we calculate correlator 〈CkC̄m〉Popt . After
straightforward calculation, we obtain

〈CkC̄m〉Popt = P δkm(1− (γ L P )2
2

2M + 1

×

M∑
r ,s=−M

(J r ,s ;r ,s
I + J r ,s ;s ,r

I ))+ P (γ L P )2

×

M∑
r=−M

[
J r ,m;r ,k

I + J r ,m;k,r
I + J m,r ;r ,k

I + J m,r ;k,r
I

]
.

(69)

The first term on the right-hand side of this equation contains
the Kronecker delta symbol, i.e., it is zero for k 6=m. The second
term describes the correlation between different elements of
the input sequence. To find the correlation length, we should
investigate the dependence of this term on parameter m − k.
The correlation length depends on parameter β̃. For a small β̃,
only the nearest neighbors are correlated since the spreading
of the input signal due to dispersion is small. When increasing
dispersion parameter β̃, the correlation length is increasing.
The numerical values of coefficients J i, j ;k,l

I are presented in Ref.
[32]. So one can calculate any necessary correlators.

As an example, we consider the sequence where only the
nearest elements are correlated. To build the sequence,
we should know only two distributions: Popt[Ci ] and
Popt[Ci |C j ] = Popt[Ci ,C j ]/Popt[C j ]. We have performed
the calculation of these distributions and obtain

Popt[Cq ] = P (0)
[Cq ]

(
1+ (γ L P )2 D(q)

1

(
|Cq |/
√

P
))
,

(70)
where P (0)

[Cq ] =
1
π P exp{− |Cq |

2

P } is the Gaussian distribution,

and D(q)
1 (x ) is the following polynomial function:

D(q)
1 (x )=

[
(1− x 2)

(
2

M∑
r ,s=−M

J r ,s ;r ,s
I + J r ,s ;s ,r

I

2M + 1

−

M∑
r=−M

[
J r ,q ;r ,q

I + J r ,q ;q ,r
I + J q ,r ;r ,q

I + J q ,r ;q ,r
I

])

+ J q ,q ;q ,q
I (x 4

− 4x 2
+ 2)

]
,

(71)

Popt[Ci ,C j ] = Popt[C j ,Ci ] =

∫
dCi3 . . . dCi2M+1 Popt[{C}]

= Popt[Ci ]Popt[C j ]

×

{
1+ (γ P L)2 Di, j

(
Ci
√

P
,

C j
√

P

)}
,

(72)
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Fig. 2. Dependence of function D(q)
1 (x ) on x = |C0|/

√
P for q =

0 and different values of dispersion parameter β̃. The dotted, dashed,
and long-dashed lines are plotted for dispersion parameter β̃ equal to
β̃ = 1, β̃ = 5, and β̃ = 10, correspondingly.

Di, j (x , y )= J i,i; j , j
I x 2 ȳ 2

+ J j , j ;i,i
I x̄ 2 y 2

+ (|x |2 − 1)(|y |2 − 1)
(

J i, j ;i, j
I + J i, j ; j ,i

I + J j ,i;i, j
I + J j ,i; j ,i

I

)
+ x ȳ {(J i,i;i, j

I + J i,i; j ,i
I )

× (|x |2 − 2)+ (J i, j ; j , j
I + J j ,i; j , j

I )(|y |2 − 2)} + y x̄ {(J i, j ;i,i
I + J j ,i;i,i

I )(|x |2 − 2)+ (J j , j ;i, j
I + J j , j ; j ,i

I )(|y |2 − 2)}

+

M∑
m=−M

(
x ȳ
[
J i,m; j ,m

I + J i,m;m, j
I + J m,i; j ,m

I + J m,i;m, j
I

]
+ x̄ y

[
J j ,m;i,m

I + J j ,m;m,i
I + J m, j ;i,m

I + J m, j ;m,i
I

])
.

(73)

One can see that the corrections to these PDFs are the fourth
order polynomials in parameter Cq/

√
P . Let us consider

these polynomials. In Fig. 2, we plot function D(q)
1 (x ) [see

Eq. (71)] for different values of β̃. Function D(q)
1 (x ) for dif-

ferent β̃ has the maximum in the vicinity of value x ≈ 1.5. For
x > 1.5, this function decreases for all values of β̃. For smaller
β̃, the absolute value of function D(q)

1 (x ) is larger for x > 2.
It means the applicability region determined by the relation
(γ L P )2 D(q)

1 (|Cq |/P )� 1 is wider for larger β̃. The reason is
the decreasing character of coefficients J i, j ;k,l

I for increasing β̃;
see, e.g., Fig. 2.

To demonstrate the behavior of function Popt[Cq ], we plot it
for the different dispersion parameters β̃; see Fig. 3. In Fig. 3, we
choose nonlinear parameter (γ L P )2 = 0.2, which corresponds
to the averaged signal power P ∼ 4.5× 10−4W for the realistic
channel parameters γ = 1.25 W−1km−1, L = 800 km. One
can see that the function Popt[C0] decreases slowly for smaller β̃.
It means that nonlinear correction decreases with increasing β̃.
The difference |P (0)

[C0] − Popt[C0]| gets smaller with increas-
ing β̃. The reason is that for the larger dispersion parameter,
the signal spreading is larger. It results in the decreasing of the
effective nonlinearity parameter, i.e., decreasing coefficients
J i, j ;k,l

I .
The expression in the big curly brackets in Eq. (72) is sym-

metric in coefficients Ci and C j . Since we know function
Popt[C j ,Ci ], probability Popt[C j |Ci ] can be easily obtained
using Eq. (65):

Fig. 3. Function Popt[C0] for different values of dispersion param-
eter β̃. The solid line corresponds to the Gaussian distribution
P (0)
[C0] for the power parameter P = 1 in conventional units. The

dotted, dashed, and long-dashed lines are plotted for dispersion
parameter β̃ equal to β̃ = 1, β̃ = 5, and β̃ = 10, correspondingly.

Popt[Ci |C j ] = Popt[Ci ]

{
1+ (γ P L)2 Di, j

(
Ci
√

P
,

C j
√

P

)}
.

(74)
In Fig. 4, we plot function Popt[C0|C−1] for different values
of coefficient C−1/

√
P (real and imaginary), nonlinearity

parameter (γ L P )2 = 0.2, and dispersion parameters β̃ equal
to one and five. We plot the dependence of Popt[C0|C−1] on
dimensionless variable C0/

√
P , where P is chosen to be equal

to unity. One can see that function Popt[C0|C−1] differs from
Popt[C0] and depends on value C−1 essentially. Also, the PDFs
deviate more from Gaussian distribution for larger absolute
values of C−1. One can see in Figs. 4(a) and 4(c) that the PDF
reaches the negative value at the vicinity of |C0| ∼ 2. The reason
is the large chosen nonlinearity parameter (γ L P )2 = 0.2. The
negative value of the PDF makes no sense, but it demonstrates
the region of applicability of our approximation. For smaller
parameters γ L P or for larger parameter β̃, our perturbative
result (72) is valid wherever function Popt[C j ,Ci ] is not small.
For large values of β̃, it is necessary to consider not only PDF
Popt[C j ,Ci ], but other PDFs presented in Eqs. (64)–(68),
since the spreading effects become significant. If necessary,
PDFs Popt[Ci |C j1 ,C j2 ], . . . , Popt[Ci |C j1 ,C j2 , . . . ,C j2M ] can
be derived from Eq. (45) analogously to Eq. (74). We do not
present these PDFs here because of their cumbersomeness. Files
with coefficients J i, j ;k,l

I for different M and β̃ that are needed to
calculate these PDFs can be found in Ref. [32].
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Fig. 4. PDF Popt[C0|C−1] as a function of real C0 for different
values of C−1/

√
P and β̃. (a), (b) Cases of β̃ = 1 for real and imaginary

values of C−1/
√

P , respectively. (c), (d) Cases of β̃ = 5 for real and
imaginary values of C−1/

√
P , respectively.

7. CONCLUSION

In the present paper, we develop a method of calculation of the
conditional PDF P [{C̃}|{C}] for the channel described by the
NLSE with additive noise and nonzero second dispersion coeffi-
cientβ. To illustrate our method, we calculate PDF P [{C̃}|{C}]
in the leading and next-to-leading order in the Kerr nonlinearity
parameter γ and in the leading order in parameter 1/SNR.
To obtain P [{C̃}|{C}], we calculated P [Y (ω)|X (ω)] using
two different approaches. The first approach is based on direct
calculation of the path-integral; see Eq. (18). In the second
approach, we calculate the output signal correlators for the fixed
input signal X (t) and then construct the conditional PDF. Both
approaches give the same result; see Eq. (S22). To take into
account the envelope of the input signal and the detection pro-
cedure of the receiver, we integrate PDF P [Y (ω)|X (ω)] over
the redundant degrees of freedom and obtain the conditional
PDF P [{C̃}|{C}]. Using PDF P [{C̃}|{C}] we calculate the
mutual information, solve the variational problem, and find the
optimal input signal distribution Popt[{C}] in the leading order
in parameter 1/SNR and in the second order in the parameter
of Kerr nonlinearity γ . We demonstrate that Popt[{C}] differs
from Gaussian distribution. Using the distribution Popt[{C}],
we calculated the maximal value of mutual information in the
leading order in parameter 1/SNR and in the second order in
parameter γ for the given pulse envelope, average power, and
detection procedure. We demonstrate that the γ 2-correction to
the mutual information is negative. Its absolute value is maximal
for zero dispersion, and it decreases for increasing dispersion
parameter β̃; see Fig. 1. We also prove that the mutual informa-
tion calculated using Gaussian distribution and that calculated
with the optimal one coincide in the γ 2 order. The differ-
ence appears only in the γ 4 order. It means that the Gaussian

distribution of the input signal is a good approximation of
the optimal distribution for a small nonlinearity parameter.
However, for a not extremely small nonlinearity parameter, it
is necessary to take into account the exact PDF Popt[{C}]. So,
we are able to construct the sequences {C} obeying the statistics
Popt[{C}]. In Section 6, we propose the method of this construc-
tion using conditional PDFs (64)–(68). For channels with the
small correlation lengths, we calculated explicitly Popt[Ci ] and
Popt[Ci |C j ], and demonstrate the dependence of the probabil-
ity of the subsequent coefficient Ci on the previous one C j ; see
Fig. 4.
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