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ABSTRACT

We discuss applications of the inverse scattering transform, also known as the nonlinear Fourier transform (NFT) in

telecommunications, both for nonlinear optical fiber communication channel equalization and time-domain signal processing

techniques. Our main focus is on the challenges and recent progress in the development of efficient numerical algorithms and

approaches to NFT implementation.

1 | Introduction

Nonlinear Schrédinger equation (NLSE) is one of the key master
models in nonlinear science, that is highly important in various
areas of physics and practical engineering applications, such
as nonlinear optics, hydrodynamics, plasma physics, physics
of atmosphere, biophysics, field theory, and many others (see,
e.g., [1-15] and references therein). This mathematical model is
generic, being based on rather general assumptions about media
nonlinearity and dispersion (or diffraction in the spatial waves
context). Our focus in this work will be on the high-speed optical
communications [6-8], therefore, without loss of generality, we
consider here NLSE in the fiber-optic context, with Z being the
evolution coordinate along the fiber link and a field (signal)
being a function of time T. The basic NLSE model governing the
propagation of a slowly varying optical field envelope A(T, Z) for a
single-polarization signal in the cascaded fiber-optic transmission
system reads (see for details, e.g., [6-8]):
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where Z is the distance along the fiber link, T is retarded
time, 8, is the group velocity dispersion parameter, y is the
nonlinear coefficient, and G(Z) is a periodic function describing
fiber loss and periodic amplification to compensate for the
signal attenuation. For instance, in the case of the point-action
(lumped) Erbium-doped fiber amplifiers, the periodic (with the
period Z,—distance between amplifiers) function G(z) can be
written just as: G(Z) = —a/2 + (exp[aZ,/2] — 1) X Z:zl 5(z—
nZ,). Thus, the signal amplitude (power) is boosted to the
initial level after each amplifier span. After transform A(T,Z) =
exp[ /oz G(z')dz'|B(T, Z), which in the case of point-action ampli-
fiers is equal to exp(—aZ/2)B(T,Z), in between two amplifiers
and under certain conditions (see for details, e.g., [6, 7, 16-18])
Equation (1), with loss and gain, can be approximated on average
by the lossless NLSE (G(Z) = 0) on the distance scales larger than
the amplification period. We would like to point out that the
lossless NLSE considered below is just an approximate model that
becomes less accurate when next order terms, such as, for exam-
ple, optical noise, high-order dispersion, and nonlinear Raman
effect become important, or when the path-average condition
becomes nonvalid (e.g., with an increase of signal power level)
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(see, e.g., [5-7,17]). It should also be noted that lossless NLSE can
be used as good model of real fiber-optic transmission systems
with special design using Raman amplification in ultra-long fiber
lasers [16, 19] or based on dispersion-decreasing fibers [20].

We consider, without loss of generality, point-action ampli-
fication. Averaging (1) over one amplifier span, yields for
the field U(T,Z) = (B(T,Z)) = /OL“P dZB(T,Z)/Ly,, the lossless
NLSE model in the leading order. We also add its dimensionless
representation that will be used below:

oU _ B,0%U G,—

E AR log G,

Here, G, = explaL,,]. This equation is a normalized (path-
averaged over an amplification period) NLSE that will be used
throughout the paper. Here, the normalization is introduced
in a standard manner: dimensionless time ¢t = T /T, and dis-
tance z = Z /Ly, with T, being some characteristic time scale
(e.g., symbol interval), dispersion length L, =T:/|B,|, and
characteristic power P, = log G,/(yLp(G, — 1)). The dimension-
less complex field q(t,z) = U(T,Z)/ \/}TO. The parameter o =
sign(—f,y) denotes either anomalous (focusing, o = 1) or normal
(de-focusing, o = —1) dispersion. We consider here the case of the
anomalous dispersion §, < 0 (¢ = 1), when general solutions of
this equation can include both the dispersive (linear-like) waves
and the coherent localized (in time) structures—solitons [8]. Any
initial signal evolving according to this master model can be
presented as a nonlinear superposition of dispersive waves and
soliton(s). Note that the availability of a free parameter T, in
the normalization allows to manipulate and control nonlinear
spectrum (defined below) of the real-world signal.

The NLSE belongs to the class of the so-called integrable nonlin-
ear partial differential equations (PDEs) that can be integrated
by the inverse scattering transform (IST) method developed for
this equation by Zakharov and Shabat [4], also known as the non-
linear Fourier transform (NFT) [21, 22]. With the understanding
that in this special issue this might be redundant information, we
still would like to outline the well-known basics of IST/NFT for
readers who might not be experts in the field. The NFT allows
to present the optical signal through its nonlinear spectrum. This
spectrum is determined by the solutions to the Zakharov-Shabat
problem (ZSP). First step is to compute the nonlinear spectrum
of the signal at the transmitter (¢, z = 0) = g,(t), the problem is
laid out as

9%,
ot

IP

+ qo(th, = iy,
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2+ g0, = iCY,.

The input signal g,(¢) plays the role of a potential, and { = £ + iy
is a complex parameter—analog of frequency in Fourier domain.

2 9q
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dimensionless

When the signal q,(t) is well localized (decays fast enough
as |t| approaches o), one can introduce the scattering coef-
ficients a({) = lim ¥, (t, e and b(¢) = Jlim 4,1, e %! (see
for details, [4, 21]). These coefficients satisfy the following
condition when the spectral parameter is real: |a(£)|? + |b(§)|* =
1. Full spectral data of the ZSP are given by a(¢) and b({) and
consist of two parts: continuous and discrete. Continuous part
always present and can be represented by b(§), usually called b-
coefficient, or, more commonly, using reflection coefficient r(§) =
b(€)/a(é), & € R. In the limit case, when the average signal

530 T rigq=o. ©)

amplitude tends to zero (g,(t) — 0), r(§) converges to the linear
Fourier spectrum of the signal. The second part—discrete—
is not always present in the (nonlinear Fourier) NF spectrum.
The coefficient a(§) can be analytically continued to the upper
half of the ¢-plane as a function a(¢), which has simple zeros
at the eigenvalue points, a(¢,) =0 (excluding the degenerate
case where an eigenvalue point is a multiple zero). In addition
to the real line ¢ =&, the coefficient b is generally defined
only at the eigenvalue points ¢,. For exponentially decreasing
signals, which contain all signals of interest in a communications
setup, b is analytic in a strip around the real axis whose width
depends on the decay constant (see [21, p. 268]). However, it
can be analytically continued to the entire upper half-plane if
the potential g,(t) has a compact support. The zeros of a({) =0
in the upper half-plane give us the discrete spectrum {{;},k =

1, K, with the phase coefficients defined by r, = bl(é“)) -
a’($k k

a) = da@) . The discrete spectrum corresponds to the soliton

, where

component of the signal. The NFT allows one to find the evolution
(with z) of the signal q(t, z) described by the NLSE channel by
solving two linear problems instead of solving the nonlinear PDE.
A complex signal evolution governed by NLSE is replaced by three
steps:

1. forward (or direct) transform from q(¢, z = 0) to the nonlinear
scattering data of the initial signal that can be represented as
(0, t) (see below),

2. trivial evolution of the nonlinear spectrum with z, and

3. inverse transform to restore signal q(t,z) at any desired
propagation distance z from the evolved nonlinear spectrum
3(z,t).

It is seen from above that the NFT method is similar to the
standard Fourier approach for the solution of linear evolution
equations: present initial field in the spectral domain, consider
trivial evolution of each spectral harmonic, and reconstruct
evolved signal from the spectral components known for any
propagation distance. The NFT can be used for both solving
nonlinear PDEs and enabling the decomposition of complex wave
fields into simpler components to facilitate analysis.
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As we previously discussed, the main “power” of NFT is the
trivial evolution of spectral data with distance z. The way
scattering data changes with the distance is (£, z) = r(£)e 24
and r(z) = rke’mi Z. So, knowledge of information about the full
NF spectrum, reflection coefficient, discrete spectrum, and its
phase coefficients, gives us all information about the evolution
of the signal with distance in the nonlinear spectral domain. The
scattering data combine into the core %(z, t), which is a sum of
the discrete and continuous parts of the nonlinear spectrum:

3(z,t) = Z.(z,t) + Z4(z,t)
1 +00 K
=5/ dEr(€, z)e 5 — kz:‘; r(2)e k. (4)

Here, K represents the total number of discrete eigenvalues in
the signal.

The last part of working with the NFT involves reconstructing the
signal from the scattering data. To get the signal q(¢, z) back at
a certain distance z, we use the core X(z,t) in a system of two
integral equations, known as left Gelfand-Levitan-Marchenko
equations (GLME):

t
o;(t,s) + / Z(s+1)0,(t,7)dt =0 and
-8

-05(t,s) + / 2(s+1)0,(t, ) dt+Z(t+5)=0, (5

where —t <s <t and 0 <t < T, with Z(t) = Z(z,t) already in
desired spatial point z. We need to determine two functions, ©,
and ©, as solutions of these equations. Once these functions
are found, we can recover the signal using the straightforward
formula: g(t)|, = —=205(t, ).

There is an infinite number of conservation laws that connect
NLSE integrals of motion with the corresponding scattering data.
It is useful to remind the so-called Parseval equality for NLSE,
which can be used to control the accuracy of numerical solutions
by checking the balance between continuous and discrete spectral
energies:

p=-2 [Tmia@ras=1 [T me o

E;= Zzi(g”;;—g”k) 2427710 (6)
k=1 k=1

where E. and E, represent the energy of the continuous and
discrete spectrum, respectively. The sum of these energies gives
the total energy, which is equivalent to the signal energy in the
time domain: E = E, + E,.

In the context of nonlinear fiber channels, the NFT is used not as a
tool for the NLSE solution, but as a signal processing method [18,
23]. This concept originated from the work of Hasegawa and
Nyu [24], who proposed to use the nonlinear spectrum (the so-
called eigenvalues) for the data modulation and transmission.
This was a remarkable departure from the idea of exploiting the

time-domain soliton in on-off (soliton—logical one, no soliton—
logical zero) keying binary direct detection transmission [8]. Over
the past decades, the NFT-based optical transmission techniques
have been resurrected and greatly extended (see, e.g., [18, 23]
and references therein). When the optical field propagates down
the ideal NLSE channel, the evolution of the nonlinear modes
inside the NF domain is trivial, in contrast to the complex
nonlinear evolution of signal in the space-time domain. Because
of this property, we can theoretically get rid (or reduce them)
of the infamous nonlinear cross-talk degrading the transmission
performance at high signal powers [25]. However, of course, this
is possible only for pure NLSE channels. In real optical fiber
systems, the NLSE model has limited application [6, 7, 17], as the
signal is affected by deviations from the lossless model, optical
noise, higher-order effects, and other factors. The NLSE channel
is only an approximation of the real fiber-optic links, either in
the path-average regime [6, 7, 17] or quasi-lossless links [16, 19,
26], where attenuation is compensated by the specially designed
distributed Raman amplification. Note that as a signal processing
tool, NFT can be applied to nonintegrable, including dissipative
systems (see, e.g., [27-32] and references therein). We would like
to stress, that in this work we do not use coding over eigenvalues
as in [24], our focus is to study how IST/NFT can help to
process of the conventional telecommunication signals used in
the modern coherent detection transmission links. As most of the
installed fiber-optic links use standard monomode fiber, we focus
here on nonlinear transmission modes in the case of anomalous
dispersion. Applications and limitations of NFT application in the
case of normal dispersion were investigated in [33-36].

We do not aim here at the comprehensive overview of all
recently developed techniques and approaches to applications
of NFT in optical communications. However, we mention few
methods relevant to our discussion of the numerical methods
below: nonlinear inverse synthesis scheme proposed in [37, 38]
allows on to deal only with the continuous spectrum using
conventional telecommunication signals; nonlinear frequency
division multiplexing with continuous spectrum was studied
in [39-41]; transmission based on discrete spectrum has been
examined in [42-44]; both with the discrete and the continuous
spectrum was utilized in [45]; and nonlinear frequency divi-
sion multiplexing with b-modulation was proposed and studied
in [46-48].

2 | Basics of IST/NFT Application in Optical
Communications

We will consider IST/NFT applications in a single spectral
channel. Even though, this is not directly relevant to this
work, for the readers unfamiliar with optical communications,
we briefly mention that signal can be transmitted in several
frequency channels—the so-called wavelength-division-
multiplexing (WDM) technique. WDM is a widely used and
crucial technology in optical communications, enabling the
simultaneous transmission of multiple signals along the same
fiber-optic cable, each at an own wavelength. Multiple carrier
frequencies (wavelengths) in the same channel spectral channel
also can be used, for instance, in the so-called optical frequency
division multiplexing (OFDM). In OFDM, data are split
across multiple orthogonal subcarriers within the same spectral
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channel. In telecommunication applications, it is common to deal
with the equations written in the real-world units related to the
transmission system and signal parameters, such as, for example,
carrier light frequency, average signal power, and so on. However,
in this paper, we will use both dimensional and dimensionless
equations, because all the NFT analysis is performed with
dimensionless signals. Of course, the conversion from real-world
units to normalized form and back can be easily done using the
formulas from the introduction section. The optical signal for
WDM/OFDM transmission is represented as a superposition of
modulated signals, each associated with a distinct wavelength or
frequency, A(T,Z = 0) = A,;,(T) and q(¢, z = 0) = g;,(t) are given
by:

1
dT - Ay (T) - f*(T — T,
POW/ (T) - f(T - JT3)

\/_

J N,
Ain(T) = \/P_OZ Z Cin f(T — jTS)e—iZm;nT

Jj=1n=1

where T, is the symbol interval, N, is either the number of consid-
ered spectral channels (WDM case), or a number of subcarriers
in the case of multicarrier signal (OFDM), J is the number of
symbols in the time-domain signal stream, v, = (n — 1%) A,
and A is the channel spacing; c;, is the complex point from
modulation constellation (symbol) of the jth symbol on the nth
channel, f(T — jT,)—carrier pulse shape (different for WDM and
OFDM). As discussed in the paragraph following Equation (2),
we introduce dimensionless time t = T /T,,, characteristic power
P, =1logG,/(yLp(G, — 1)), and the dimensionless complex field
q(t,z) = A(T,Z)/ \/170. While the characteristic time interval can
be chosen arbitrarily, here it is natural and convenient to choose
this as the symbol interval: T, =T,. The reader may notice
that the normalization transforms the equation for A4;, into g,
with a normalization factor equal to one. However, we explicitly
introduce a coefficient \/Q_0 to show that changing this coefficient
changes the amplitude, and thus the power of the dimensionless
signal. Quantities f and ¥, correspond to the dimensionless
variant of the carrier pulse and carrier frequency, respectively.

Without loss of generality, in this work we consider the so-
called quadrature amplitude modulation (QAM) format, which
exploits both the amplitude and phase of the light signal. QAM
is a bandwidth-efficient (compared to binary coding) signaling
scheme that achieves higher data rates within a given bandwidth
by encoding multiple bits per symbol through the use of a
constellation of amplitude and phase combinations. The number
of states in QAM is 2¥, determined by the number of bits per
symbol, such as in a 16-QAM system (M = 4) or a 64-QAM system
(M =6), and so on. Figure 1 shows examples of constellation
diagrams for 16-QAM (left) and 64-QAM (right). These diagrams
represent the standard form of QAM modulation, where different

dimensionless

symbols are located at grid points on the complex plane. Above
each point, the corresponding bit sequence for that point can be
observed. All neighboring points differ from each other by only
one bit, this technique is known as Gray coding [49].

On the receiver side, the incoming signal A,,,(T) is demodulated
to recover the original symbols that were sent. In case of WDM,
different spectral channels are demultiplexed (filtered out) and
processed separately. Essentially, the received signal is processed
by a matched filter in a way that isolates each transmitted symbol,
denoted by b;, using the conjugate of the pulse shape f*(T —
JT,). In the case of a single channel (N, = 1 in Equation 7), the
received symbols b; can be found by applying a matched filter:

b; dt - Qo (1) - f*(t = ). ®)

il

N,

J C
_ qin(t) = \/Q_OZ Z Cjn f(t _ j)e—i2mfnt’ (7)
j=1n=1

dimensionless

n

The matched filter is an essential component in digital com-
munication systems, utilized at the receiver to maximize the
signal-to-noise ratio (SNR) for a given received signal, thereby
facilitating optimal detection of symbols b;. In an ideal, error-free
transmission, these symbols should be equal to c;. However, in
practical communication channels, the received symbols b; devi-
ate from the transmitted ones c; due to the impact of noise and
other effects (nonlinearity in the case of fiber communications).
Spectral processing can also lead to errors; for instance, for a
multichannel WDM signal, we first cut the spectral interval corre-
sponding to each channel. This isolates a part of the WDM signal,
which can then be treated as a single-channel WDM to find the
corresponding received symbols. The neighboring channels can
affect each other during propagation through the fiber, leading
to nonlinear cross-talk (spectral channels do not interact in the
linear transmission regime). Evidently, to take advantage of the
NFT to compensate for nonlinear distortions, we need to operate
with the signal detected in the whole available bandwidth. After
cutting off some spectral components using a WDM filter, we lose
information about neighboring channels. Therefore, the analysis
presented in this work is for a single channel (e.g., after WDM
filtering). In general, NFT can also be applied to a group of WDM
channels, if the receiver bandwidth allows them to be separated
and processed together. The NFT approach is versatile and can be
applied to different signal formats, modulations, and information
coding schemes, subject of availability of the information about
both amplitude and phase of the signal (coherent detection). In
practical communication systems, error-correcting codes, includ-
ing forward error correction (FEC), play a crucial role in ensuring
reliable data transmission by detecting and correcting errors
that occur during signal transmission. These coding techniques
(such as, e.g., Reed-Solomon, Hamming, or LPDC codes) are
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Re(ck)

()

-7 -5 -3 - 1 3 5 7

FIGURE 1 | Example of a constellation diagram for QAM. (a) 16-QAM format and (b) 64-QAM. Above each point, the corresponding bit sequence
for that point is displayed. All neighboring points differ from each other by only one bit—Gray coding method.

essential for achieving high transmission quality, especially in
noisy environments. While we do not examine in this work the
most efficient coding and modulation schemes using NFT, but
rather focus on the basic principles of such signal processing,
it is important to note that coding can typically be considered
in parallel to development NFT algorithms. FEC will affect
estimate/evaluation of the spectral efficiency (SE) as part of the
bits will be allocated to correct errors, reducing overall SE. For
more information about error coding, FEC, and their application
in optical communication, see references such as [50-52].

The main focus of this work is to provide examples of applications
of IST/NFT in a realistic telecommunication context. Optical
signal transmission is characterized by several key performance
parameters. Bitrate, which is a characteristic of the digital data
transmission speed in bits per second, is defined by multiplying
the baud rate (symbol transmission rate per second) by the
number of bits each symbol represents:

Bitrate = Baud Rate X M, ©)

where M is the number of bits per symbol. It is seen that
the bitrate can be increased either by using higher baud rates
(shorter symbol intervals and, respectively, shorter carrier pulses)
or by encoding more bits within the symbol interval. The overall
number of available degrees of freedom is proportional to the
product of the channel bandwidth Q and the total time interval
over which information is sent. This leads to the SE metric:

_ Number of error-free transmitted bits per second

SE Channel bandwidth

(10)

Assessing the performance of digital signal transmission involves
measuring the bit error rate (BER), a critical metric that quantifies
the proportion of bits received incorrectly out of the total bits sent.
The BER directly measures a system’s transmission accuracy and
is defined as

Number of bit errors

BER = .
Total number of bits transmitted

)

This parameter is the essential metric for evaluating transmission
quality and for comparing different techniques and methods.

Another useful simplified metric, error vector magnitude (EVM),
is often used as a measure of the quality of transmission and
system performance. It compares the ideal symbol points (e.g.,
points in the complex plane as illustrated in Figure 1) to the actual
symbol points received, providing insight into the distortion
induced during transmission (here summation is over all symbol
points):

Y (Ideal symbol point — Received symbol point)2

EVM = 4
Y (Ideal symbol point)

(12)
In the subsequent sections, we discuss the methodology of
applying NFT in optical communications.

3 | Methodology of Application of NFT in
Communications

Data are sent as a sequence of symbols that include some over-
heads. In many conventional optical communication systems,
particularly those used in long-haul and high-capacity networks,
these packets are typically rather long. Therefore, one can treat
information flows as (effectively) continuous [52, 53]. Data in
such systems are constantly transferred through the channel with
some small overheads allocated for clock recovery. A continuous
signal imposes certain limits on the applicability of the NFT.
Currently, the most efficient and best developed numerical NFT
methods are for vanishing boundary conditions. Therefore, for
application of these techniques, signals must be transmitted in
packets with sequences of zero symbols in between, that is called
“burst” mode transmission.

To apply IST/NFT methods for potentials with vanishing bound-
ary conditions, in this work, we consider the so-called burst-mode
transmission, as schematically shown in Figure 2. Information
is coded over time intervals T,. The guard interval, T,, is the
time interval between separate bursts, “guarding” them from
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Continuous signal, T, =0

T/VTV\T

N

0 1

- A -
2 3 4 5 6 7 8 9 1

Time, t

0

FIGURE 2 | Theschematic representation depicts the burst mode with different ratios of T' o/ Tp- The first row illustrates a continuous signal without

a guard interval (T, = 0), the second row shows a guard interval that is half the length of the burst size (T, = 0.5T},), and the third row demonstrates

when the guard interval is one fourth of the burst length (Ty = 0.25T}).

overlapping due to dispersive broadening of the signal. The
top panel of the figure shows a schematic representation of a
continuous signal. In this case, there is no time “gap” between
separate bursts, so the signal is continuous and the guard interval,
T,, is zero. The second and third panels illustrate the case where
T, is not zero. Here, we have a gap between bursts.

During propagation, the signal can be substantially altered and
broadened due to dispersion effects, which consequently leads
to a reduction in the gap between consecutive signals. The size
of this gap is directly dependent on the propagation distance
and should be introduced, respectively. At low signal powers
(in the linear propagation limit), this dispersive broadening
can be completely reversed at the receiver, either optically or
electronically. However, nonlinear interactions result in complex
effects on the signal that cannot be reversed with dispersion
compensation alone. Due to dispersion broadening, which can
extend over several hundred symbol intervals in long-distance
optical communication systems, further internal nonlinear inter-
actions within the signal can cause one transmitted symbol to
be influenced by very distinct neighbors (across hundreds of
neighboring symbols). That’s why the use of NFT techniques,
which can mitigate both nonlinear and dispersive effects, can be
beneficial compared to dispersion compensation alone [34]. NFT
can integrate both dispersion and nonlinearity compensation into
signal processing. Note that the compensation on both dispersion
and nonlinearity can be also done by digital backpropagation
(DBP) [54] using the split-step Fourier method (SSFM) [52],
which iteratively computes the signal evolution in small steps
over both the frequency and spatial domains. Although the DBP
based on few steps per span remains an important tool, the NFT-
based approaches [55] potentially can offer a trade-off between
complexity of direct and inverse NFT (INFT) and just one step
spatial evolution in the nonlinear spectral domain.

As mentioned above, the most efficient NFT algorithms are
developed for signals with vanishing boundary conditions. This
implies that we should somehow divide the signal into parts
that can be processed separately. This can be achieved not with
a continuous signal, but with bursts of a particular duration
separated by guard intervals. In this case, we can potentially
analyze each burst independently. In an ideal scenario (a pure
NLSE channel), NFT would perfectly restore the deterministic
signal distortions after propagation. In general, the size of the
guard interval should depend on the burst broadening. The
broadening, T,, can be estimated as follows: Ty =f,-Q-L,
where 3, is the group velocity dispersion parameter of the fiber, L

is the propagation distance, and Q is the signal bandwidth (in the
frequency domain).

As soon as we have a sequence of bursts, each of which broadens
to both sides in the time interval, the guard interval that would
allow us separate processing of the bursts can be estimated as

(see [5])
T,=2T;=2-L-f, Q. (13)

This estimate also approximately coincides with the estimate for
the soliton scattering velocity in the considered signals. If we use
the maximum value of real discrete eigenvalues £, (gives the
soliton velocity 2£,,,,), for considered signals, then we can obtain
an estimate for the soliton spread in dimensional variables:

Td = ngax # Lo (TU/LD)

Thus, the guard interval in burst-mode transmission depends
on the propagation distance, which must be considered during
system design. However, selecting a large enough guard interval
to ensure the “independence” of each burst from others is
impractical, as it results in most of the available time intervals
(bandwidth) not carrying information. SE measures how effec-
tively a communication system uses its available bandwidth to
transmit data. It is defined as the data rate (in bits per second)
divided by the bandwidth (in Hertz) used for data transmission.
The higher the SE, the more data can be transmitted in a given
amount of bandwidth, making the resource use more efficient.
Adding a gap that does not bear information to the continuous
signal evidently decreases the overall transmission efficiency.
In general, each telecommunication format has its own SE. In
our case, NFT is a common approach that does not depend on
the format, so the main ideas can be applied to any system. In
this context, we want to introduce the term normalized spectral
efficiency (NSE), which is simply the spectral efficiency of the
signal divided by the maximum format SE (in our case, when the
transmission is continuous without guard intervals). NSE can be
defined as follows:

-1

Ty T,
NSE = =(1+= . 14
T, +T, ( T, a4

In the limiting cases, NSE = 1 when T, = 0 (fully utilizing the
available spectrum), and NSE — 0 as T,/T, — co, indicating
decreased efficiency as the guard interval increases.
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figure provides a schematic of different Ty /T, ratios: the first for a continuous signal without a guard interval, the second for a guard interval equal to

the burst length, and the third for a guard interval equal to the three burst lengths.

Figure 3 illustrates the relationship between NSE and the length
of the guard interval T, for different burst sizes (both guard
interval and burst size T, are defined in terms of the symbol
interval Ty, T, = N - T). The figure shows that increasing the
burst size slows the decrease in SE. This suggests that creating and
analyzing very long bursts can enhance the overall SE of a system.

We summarize the methodology for applying NFT for signal
processing at the receiver as follows:

1. Receive the signal and slice it in the middle of the guard
intervals to isolate the bursts.

2. Apply NFT to restore the transmitted burst, incorporating the
three steps of NFT outlined earlier.

3. Decode data from the processed bursts.

The larger the burst, the more data can be restored in a single
application of NFT, improving SE. However, the processing of
excessively long bursts is constrained by the capabilities of current
NFT algorithms.

As the evolution of the nonlinear spectra with distance is trivial in
the NFT domain, this paper mainly focuses on the NFT’s ability to
process individual bursts. The ultimate goal is to process as long
a timing burst as possible to maximize the system’s SE. Figure 4
illustrates the NFT coefficients and spectrum for bursts. The top
image shows a burst of 64 symbols, and the bottom image displays
a burst of 256 symbols, with the average signal power remaining
constant. In both cases, the first row schematically represents
the burst mode (with several bursts shown, but only one burst
used for analysis). The second row in each image, for comparison,
presents the conventional Fourier spectrum §(¥) of the burst g(t)
on the left, depending on the dimensionless frequency 7, the
continuous nonlinear spectrum—the NFT reflection coefficient
r(&) in the middle (x-axis representing the nonlinear frequency
&), and the discrete eigenvalues—the discrete spectrum ¢, on the

right. For both smaller and larger bursts, the significant part of
the reflection coefficient r(§) typically spans the spectral interval
[—3,3]. Outside of these boundaries, the amplitude decreases
drastically toward zero as the absolute value of the nonlinear fre-
quency increases. The computation of the continuous spectrum
does not pose a particularly difficult problem—fast and precise
numerical methods are well-developed, which we will detail in
the following section. The more interesting and essential part of
the nonlinear spectrum is depicted on the right pane, showing
the discrete spectrum corresponding to the considered burst. It is
important to note that for the discrete spectrum ¢, all values lie
above the real axis. For some values, the imaginary part of ¢ is
relatively small (around 10~*); for better visualization, the size of
the dots is increased, making them appear as if intersecting the
real axis, though this is not the case. By “smaller” and “bigger”
sizes of the burst, we refer to its time duration or the number
of symbols, which are equivalent. It is observed that a “smaller”
burst with the same average power has fewer discrete eigenvalues.
Conversely, the longer the burst, the greater the number of
discrete eigenvalues (in this case, the fraction of energy associated
with the continuous spectrum decreases, as will be shown later.).
We can go deeper and make the following observation: the larger
the number of discrete eigenvalues, the lower the accuracy of
the NFT algorithms (see the study of the accuracy of algorithms
for the direct NFT in [56] and examples of reconstruction of
multisoliton solutions in [57]). This is the results of the INFT
operation, which in most numerical approaches requires precise
calculation of the kernel 2(z) (see Equation 4) and solving the
GLME (5).

As mentioned in the introduction, in our case of anomalous
dispersion medium, both dispersion and soliton components can
be present in the signal. However, the presence of the soliton
component depends on several factors, primarily related to the
average signal power. In scenarios of low signal amplitude, the
NFT operation converges to the conventional Fourier transform,
and the reflection coefficient essentially represents the Fourier
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Example of the nonlinear Fourier spectrum for bursts: the upper picture for signal with 64 symbols, the lower with 256. Each picture

includes: the first row showing a schematic of burst mode, and the second row presenting the conventional Fourier spectrum §(f) depending on the
dimensionless frequency ? on the left, the nonlinear reflection coefficient (&) (continuous nonlinear spectrum) in the middle, and the discrete spectrum

¢\ on the right.

image of the signal, albeit with some scaling [58]. Conversely,
as the signal power increases, the divergence between the
conventional Fourier and nonlinear Fourier transform becomes
more pronounced. The precise conditions under which discrete
eigenvalues (soliton components) appear in smooth signals can
be determined analytically. For a simple rectangular impulse, this
threshold can be explicitly calculated [59]. For more complex
systems, where the theoretical computation of soliton presence
is not feasible, several studies have explored the conditions
under which a soliton becomes part of the signal [60, 61]. In
addition, more innovative approaches, such as the use of neural
networks to compute the number of discrete states, are being
investigated [62].

4 | Key NFT Numerical Algorithms

In this section, we provide a concise overview of the key
numerical methods used in both direct and inverse NFT without
delving into technical details.

Direct NFT involves decomposing a signal into its nonlinear
spectral components: the continuous spectrum, which represents
the radiation or background modes, and the discrete spectrum,
which is associated with solitonic components. The calculation
of the continuous spectrum typically involves solving the ZSP, a
pair of coupled ordinary differential equations (ODEs). There are
various algorithms available for solving ODE systems, tailored to
the specific properties of the Zakharov-Shabat system such as
system stiffness and the preservation of the system’s invariants.
The following methods utilize transfer matrices, where the
solution is obtained by repeatedly multiplying the initial data by
matrices:

* Ablowitz-Ladick method with normalization of the transfer
matrix (second order of approximation) [56];

* exponential methods: the Boffetta-Osborne method (second
order) [63], ES4 and ES6 schemes of fourth and sixth orders,
respectively, which use Magnus expansion, as well as vari-
ants of these schemes, in which the matrix exponential is
calculated using the Padé series expansion [64];

* commutator-free quasi-Magnus schemes (CFQM) [65, 66],
also using Magnus decomposition, but on a nonuniform grid;

* three-exponential scheme TES4 [67] of the fourth order, as
well as its variants that differ in the method of splitting the
central exponential [68];

* scheme CT4 (conservative transformed) of fourth order [69].

Most of the considered algorithms allow the so-called “fast”
calculation (fast NFT—FNFT). The name of the approach is due
to the reduction in the number of arithmetic operations for calcu-
lating the continuous spectrum from O(M?) to O(M logi M) [70,
71]. The reduction in the number of operations here is achieved
by fast computing the product of transfer matrices technique and
fast multiplication of polynomials using fast Fourier transform
(FFT) [71-73]. Instead of multiplying the vector of initial data
by the transfer matrix for each time step, all polynomial transfer
matrices are first multiplied, which gives the complete transfer
matrix T(§) as a polynomial in &.

The discrete spectrum is characterized by eigenvalues and cor-
responding norming constants. To find the eigenvalues, it is
necessary to find the zeros ¢, of the function a () in the upper
half-plane. Most existing approaches can be divided into three
main categories:

* iterative methods for finding the roots of a complex equa-
tion a(¢;) =0 [56]: Newton’s method, secant method, and
Muller’s method;
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* methods using some partition of the complex plane or
movement along it along trajectories: method of contour
integrals [74, 75], phase jump tracking (PJT) method [76, 77],
and adaptive algorithm based on trust regions [78];

* solution of the eigenvalue problem for a certain matrix:
method based on constructing a certain polynomial and
finding its roots by finding the eigenvalues of the corre-
sponding accompanying matrix using QR/QZ decomposition,
finite difference method [79], Ablowitz-Ladick scheme for
solving a discrete spectral problem [79], Fourier colloca-
tion method [79-81], and algorithm based on the Graffe-
Lobachevsky transform [73].

There are also hybrid methods: any combination of the
approaches described above. For example, solutions obtained
by eigenvalue search methods can be used as initial guesses for
starting iterative search methods.

Calculating norming constants is a challenging task due to the
presence of rapidly growing components and high sensitivity to
initial data [82-84]. Many approaches have been proposed to
improve the accuracy of calculating these quantities. In partic-
ular, when calculating normalization constants for eigenvalues
whose imaginary part is greater than one, stability problems arise.
In such cases, a bidirectional method is used, based on solving the
ZS system with left and right initial data [83-85].

INFT reconstructs the time-domain signal from its spectral
components. This process is inherently more complex than
the direct transform due to the need to accurately synthesize
both continuous and discrete spectral contributions. Several
approaches to signal reconstruction from a nonlinear spectrum
are presented in the literature:

* solving the Riemann-Hilbert problem [86];

* methods based on integrating the GLME: a method transi-
tioning to a system of equations in partial derivatives [87],
the Toeplitz inner bordering (TIB) method [88, 89] and
its block version—generalized TIB (GTIB) [57], and high-
order GTIB [90, 91], the integral layer-by-layer recovery
algorithm [92, 93], and the algorithm for parameterizing the
kernels of the GLME by polynomials [94]. Fast schemes are
also proposed [95-97] involving fast layer-peeling algorithm
and fast Darboux transform (FDT).

In [98], it is shown that methods based on the numerical
solution of the GLME are more accurate compared to those based
on factorization for solving the Riemann-Hilbert problem. In
the case of a pure continuous spectrum, time-reversed forward
NFT algorithms can be utilized to implement INFT [41, 98],
positioning the INFT as a counterpart to the direct NFT, akin to
the general Fourier transform. For a purely discrete spectrum,
the most effective method is the Darboux transform (dressing
method) [84]. The Darboux method is also applicable in scenarios
involving a combination of continuous and discrete spectra [99]
but requires preliminary inversion of the continuous spectrum
(e.g., using GTIB [90, 91]).

5 | Results

One of the objectives of this work is to discuss the boundaries
and limitations of using NFT methods for reconstructing con-
ventional telecommunication signals transmitted in burst mode.
Processing long bursts with NFT presents significant challenges.
A primary challenge is the accurate computation of a large
number (up to several thousands) of discrete eigenvalues and
subsequent reconstruction of such a complex signal. The speed
of these calculations is also crucial for the potential practical
implementation of NFT techniques in the future. Initial exper-
iments have demonstrated that in some cases omitting even a
small number of discrete eigenvalues can significantly impact the
accuracy of signal reconstruction.

Anintriguing computation approach recently developed is the so-
called PJT with an adaptive step [76, 77]. This method achieves
both high accuracy in determining large discrete spectra and
rapid processing. It utilizes an efficient sixth-order exponen-
tial scheme (ES6) with a ninth-order Padé approximation for
the matrix exponential. Nevertheless, even with this advanced
approach, searching for discrete eigenvalues remains the most
time-consuming step in the process. Norming constants were
evaluated using bidirectional approach [83, 85].

We should note here that the need to use high-order methods
is determined by the specifics of the problem: the signal is
determined on a very coarse grid—only two samples per symbol
are used. Under such conditions, the only way to reduce the
computational error of the form Ch?, C = const, which depends
on the step h along the computational grid, is to use high-
order methods with large p. This is especially noticeable when
calculating a discrete spectrum. Using second-order methods,
for example, Ablowitz-Ladik’s scheme, it is difficult to calculate
a discrete spectrum on such a computational grid correctly.
However, we must also acknowledge the lack of developed
high-order fast algorithms for the inverse problem.

For the INFT of the continuous spectrum, we used the fast
layer-peeling method from the FNFT library [100], known as
the Ablowitz-Ladik scheme. This method is efficient when the
number of computational nodes is a power of two. Consequently,
we adjusted the length of the computational domain (in symbols)
to the nearest power of two. To enhance the stability of the inverse
transform and improve the accuracy of phase jump detection on
the real axis, we increased the sampling rate of the continuous
spectrum by up to a factor of 16.

The contributions from the discrete spectrum were integrated
separately using the Darboux method from the FNFT library. It
was noted that in the case of high nonlinearity, problems with
signal recovery arise due to the Darboux method. One of the
reasons is that when adding the contribution of the next soliton to
the signal, we get a division of two large values close to the double
precision limit. There are cases in the calculations when the
signal cannot be calculated at all. In this paper, we propose a new
approach to recovering signals with high nonlinearity and a large
number of discrete eigenvalues. First, it is necessary to presort
the discrete eigenvalues in descending order of the imaginary
part value (this step is already implemented in the FNFT library).
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FIGURE 5 | Threeexamplesof how NFT algorithms perform back-to-back transformations are illustrated. Each example follows the same structure:
In the first pane on the left, a blue line represents the original signal g(t, 0), while a red line depicts the result of the signal reconstruction using NFT
gnrr(t, 0). Directly below, the absolute error |g(t,0) — gnrr(t,0)] is displayed. On the right column, a zoomed section of the signal from the left pane is

shown for detailed examination, with the associated NF spectrum presented below it. Here, green dots indicate the discrete spectrum ¢}, and a purple

line shows the amplitude of the nonlinear coefficient |r(£)|.

Then, at a certain step, when adding another discrete eigenvalue
disrupts the calculation or values at the double precision limit
occur, the recovery procedure stops. That is, we sacrifice small
discrete eigenvalues for the opportunity to correctly obtain the
recovered signal. If the number of removed discrete eigenvalues
is small, in most cases this procedure allows maintaining the BER
value at the same level. We stopped the calculation at the moment
when NaN (“not a number”) first appeared in the loop. This
happens when dividing by zero when calculating an expression

_ ¢ — b)Y

B = S oo

where ¥, , and ¢, , are the components of the Jost solutions used
in one step of the Darboux method. To do this, it is enough to
check the next obtained value of g(¢) for NaN or to check equality
to zero in the denominator in the expression for 3.

Figure 5 presents examples of back-to-back transformation (with-
out propagation): forward NFT to calculate the NF spectrum
and scattering coefficients, and INFT to restore the original
signal from scattering data within the framework of the general
approach to signal reconstruction by the Darboux method with
preservation of all discrete eigenvalues. The figure shows three
examples: the first pane on the left displays a blue line corre-

sponding to the original signal q(¢, 0), while the red line illustrates
the result of NFT-based signal reconstruction gypr(t,0). Below
the first pane, the absolute error |g(t,0) — gypr(t,0)| is depicted.
On the right column, a zoomed section of the signal example
from the left is shown. Below in the right column, the associated
NF spectrum is presented: green dots represent the discrete
spectrum ¢, and the purple line indicates the amplitude of the
nonlinear coefficient |r(£)|. All three parts of the figure follow this
structure.

The upper part of Figure 5 illustrates a burst with 2048 symbols
(T, = 2048T,) at an average signal power of —3 dBm. Throughout
the full time interval, the error remains at an average level
of 10™*, demonstrating good NFT restoration accuracy. In the
lower right pane, it is noted that this burst contains 949 discrete
eigenvalues in its NF spectrum, with the amplitude (imaginary
part) consistently at 0.01. The central part of Figure 5 displays a
burst with 512 symbols (T}, = 512T) at the same average power
level of —3 dBm. The NFT restoration accuracy mirrors that of the
larger 2048-symbol burst, with the absolute error predominantly
around the 107 level. As anticipated, the smaller burst features
fewer discrete eigenvalues—165 in this case—consistent with
the expectation that larger bursts will contain more solitons (as
represented by discrete NF spectrum) at the same average power
level (see [61] for details).
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A more complex and challenging scenario in which the problems
of Darboux method are revealed is depicted in the lower part of
Figure 5, where a burst of 512 symbols (T, = 512T) is presented at
a higher average signal power of 10 dBm. The discrete spectrum,
shown in the lower right pane, includes 266 eigenvalues, nearly
a hundred more than the similar-sized burst at —3 dBm. Notably,
the maximum value of the imaginary part of discrete eigenvalues
reaches approximately 0.2, which is 20 times greater than in lower
power scenarios. This substantial increase in the imaginary part
values could potentially lead to higher inaccuracies in numerical
calculations, given that they influence the e %kt factor in the
kernel %(z,t) used in GLME (5) (see [57]). In Figure 5, the
left column demonstrates how NFT reconstructs the original
signal. Notably, in the central region, specifically between 400
and 600 dimensionless time units, the restoration quality is
adequately high and stable, with an absolute error maintained at
the level of 1073. However, outside this interval, the restoration
accuracy significantly deteriorates, leading to entirely erroneous
results where the absolute error reaches the level of the signal
amplitude itself. The zoomed view in the right upper pane
highlights specific issues with accuracy. In the time interval ¢ €
[610, 620], discrepancies between the restored and the original
signals begin to emerge, and post ¢t = 620, the restored signal
becomes completely inaccurate. A similar degradation in signal
reconstruction is observed at the opposite end of the time scale,
where the value of t drops below —400.

As mentioned previously, a significant factor contributing to
numerical inaccuracies in NFT is the term e x| where —i¢,t =
—i(& +iny) - t = (=i&, + n,) - t. The larger values of the imag-
inary part of the discrete spectrum, when multiplied by time,
result in a larger exponential factor that exceeds the accuracy
limits of standard floating-point numbers. This is one of the
critical limitations of NFT algorithms, particularly evident when
attempting to increase the average power beyond a certain
threshold. Such limitations lead to increased EVM and BER,
highlighting the numerical challenges. Moreover, while numer-
ical inaccuracies are one aspect, the complete failure of INFT
restoration presents an even more significant challenge. This
issue is a primary constraint that restricts further increases in
burst size within the framework of the general approach to signal
reconstruction by the Darboux method with preservation of all
discrete eigenvalues.

Utilizing NFT with vanishing boundary conditions, we are
presently constrained to burst-mode transmission. In such sce-
narios, we aim to employ the longest possible time bursts
to maintain SE (as indicated in Equation (14) and Figure 3).
However, longer bursts necessitate managing a greater number
of discrete eigenvalues (as illustrated in Figure 5) and the precise
calculation of their spectral coefficients r,. In addition, there is a
need for accurate methods for INFT capable of handling such a
large quantity of discrete eigenvalues. These requirements define
the upper limits on the burst size that can be effectively processed,
which will be discussed further.

In this section, we analyze the statistics of 1000 bursts at an
average signal power of —3 dBm, with burst sizes ranging from
200 symbols (T, = 200T) to 4000 symbols. For each burst size,
we measured the average EVM and calculated the resulting BER.
Figure 6 demonstrates how BER (black dots) and EVM (blue line

with markers) vary with the number of symbols in the burst Ny,
for the general Darboux method and modified. Initially, from
200 to approximately 2500 symbols, the BER remains at zero,
indicated by the green zone. This zero BER suggests perfect signal
restoration across all 1000 bursts, despite a gradual increase in
EVM with burst size, indicating that numerical errors remain
below the threshold for error onset. The threshold is breached
at 2500-2600 symbols, where a slight rise in average EVM
corresponds to the emergence of a nonzero BER. Although this
initial change is not drastic—remaining below the FEC level of 4 -
102—this change signals a warning (yellow region), suggesting
that while error rates are low, additional techniques are required
to maintain near-errorless information transmission (BER after
FEC becomes below 107 [101]). The graph reveals a consistent
increase in EVM with burst size, logically reflecting the rising
challenge of accurately handling an increasing number of discrete
eigenvalues. It is noteworthy that after 3300 symbols both EVM
and BER increase sharply, but BER never exceeds the FEC
threshold for the considered burst lengths for modified Darboux
method. The general approach gives sharp escalation of EVM and
BER, and by 3400 symbols, the BER exceeds the FEC threshold.

The left part of Figure 7 addresses INFT failures for the general
approach to signal reconstruction by the Darboux method—
the frequency of INFT errors relative to the total number of
bursts per parameter set, illustrating the reliability of INFT with
preservation of all discrete eigenvalues. Beyond 2500 symbols,
INFT algorithms fail rate increases, resulting incomplete infor-
mation loss from bursts and a corresponding rise in average BER.
A significant jump in EVM between 3300 and 3400 symbols
highlights the point where numerical algorithms begin to fail
(return an error). Thus, post-3300 symbols, the zone is marked
in red, indicating regions where NFT algorithms fail to reliably
restore the signal.

What causes the INFT to fail? A simple explanation can be
obtained from Figure 7 (right). Here, the red line represents the
portion of the total signal energy (see Equation 6) attributed to
the discrete spectrum—namely, solitons. The blue line chart is
the average total number of discrete eigenvalues in the data set
for each number of symbols. The zones are color-coded similarly
to Figure 6—green for zero BER, yellow for BER below the
FEC threshold, and red for BER exceeding 4 x 1072. Initially, we
observe that as the number of symbols increases, the proportion of
energy corresponding to the discrete spectrum quickly rises and
stabilizes at the end of the green zone—around 2000 symbols.
Concurrently, the count of discrete eigenvalues nearly linearly
increases with the burst size. This trend aligns with the general
understanding that longer signals in the time domain typically
contain more solitons. Given that the average signal power
remains constant, the increase in total number of symbols in a
burst leads to a greater allocation of the total energy to solitons
rather than to the dispersive part of the signal. Hence, the number
of solitons increases while their average imaginary part stays
consistent. This scenario creates numerical challenges for NFT
methods: the factor e+ becomes numerically unstable, leading
to INFT failures. Consequently, once the number of discrete
eigenvalues reaches a certain threshold—in this case, around
2600 for —3 dBm—current numerical methods struggle to deliver
reliable results, manifesting in the observed INFT failures. Note
that problems also arise in the case of normal dispersion, when
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FIGURE 6 | Theleftplotdisplays the BER (black dots, values on the left axis) and EVM (blue line, values on the right axis) depending on the number
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only those discrete eigenvalues whose addition does not lead to calculation failure. All data points represent the average values from the statistics of
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result when the Darboux method uses all discrete eigenvalues. The red line on the right plot represents the ratio of energy associated with the discrete
spectrum (¢,) to the total signal energy as a function of the number of symbols in the burst. The blue line indicates the average number of discrete
eigenvalues in the nonlinear Fourier spectrum relative to the burst size. The plots employ the same color coding as in Figure 6: the green region signifies
a BER of 0, indicating all symbols are correctly decoded; the yellow region indicates a BER less than 4 - 1072, suitable for hard decoding at the forward-
error-correction (FEC) level; and the red region where the BER exceeds this FEC threshold. All data points are derived from the average values of 1000

different burst samples.

there is no discrete spectrum. One possible solution here is to use
high-order methods for INFT [90, 91].

Up until now, we considered the broad context of using the
NFT approach for telecommunication signal processing. In this
section, we show examples of the performance analysis for single-
channel 16-QAM WDM signal transmission over 12 spans of
80 km standard single-mode fiber (SSMF), resulting in a total
distance of 960 km. The average signal power remains the same at
—3 dBm. The main propagation model used is the path-averaged
NLSE (2). To focus on the nonlinear transmission impairments,
we also assume no additional noise. All parameters of the fiber-
optic communication line under consideration are presented in
Table 1.

Figure 8 presents the same plot as Figure 6 but for signal
restoration using the complete three-step NFT approach: forward
NFT, compensation of scattering data evolution according to
the propagation distance, and INFT. The black dots show the
resulting BER after full signal processing, and the blue line shows
the corresponding EVM for each number of symbols in one burst
Nymp- The color scheme remains the same: green, yellow, and red

zones indicate zero, less, and more than FEC level BER, respec-
tively. For the modified Darboux method, there are no significant
difference in the borders of the colored regions between the cases
without propagation (Figure 6) and with propagation.

For the general Darboux method, the NFT approach begins
to show insufficiently accurate results after 3100 symbols in a
burst (compared to 3300 for the case without propagation). In
addition, the yellow region starts at a much lower number of
symbols—right after 1000, while it was 2400 for the back-to-back
system. This is not surprising—when we add propagation, we
include the second NFT step into account, which adds additional
inaccuracy into the final calculation. As shown before, for each
discrete eigenvalue in the NF spectrum, we must calculate
scattering coefficients and then multiply them by a phase factor
e 4% that contains a real-value exponent that depends on the
real and imaginary part of the eigenvalue. This phase factor
is defined by the propagation distance, so the overall value of
the exponent highly depends on the accuracy of the eigenvalue
calculation. As numerical calculations do not guarantee total
convergence, sometimes numerical errors and instability can
occur, leading to errors in signal reconstruction. Therefore, we
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TABLE 1 | Channel and signal parameters.

Parameter Symbol Value Parameter Value

Span length Ly, 80 km Central wavelength 1.55 pm

Number of spans Nyp 12 Average signal power —3dBm
Attenuation a 0.2 dB/km Modulation format 16-QAM
Group-velocity dispersion B, —21.7 ps*/km Channel baud rate 67.4 GHz
Nonlinearity y 1.21/W/km Pulse shaping RRC with a roll-off factor of 0.1
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FIGURE 8 | Results for single-channel 16-QAM WDM signal propagation over 12 spans of 80 km (960 km) standard single-mode fiber (SSMF). The
left plot displays the BER (black dots, values on the left axis) and EVM (blue line, values on the right axis) depending on the number of symbols in each
burst when the Darboux method uses all discrete eigenvalues. The right plot displays BER and EVM when the Darboux method uses only those discrete
eigenvalues whose addition does not lead to calculation failure. All data points represent the average values from the statistics of 1000 different burst

samples, with an average signal power of —3 dBm. The color scheme remains the same: green, yellow, and red zones indicate zero, less, and more than
FEC level (4 - 1072) BER, respectively. The right plot illustrates the proportion of instances where the inverse NFT (INFT) completely failed, returning

an entirely incorrect result.

see the consequence—with an increase in the number of symbols
in a burst, we increase errors (which include dependence on
propagation). The proof for this is seen on the right graph, where
cases of INFT fails occur for a much “wider” region than in the
back-to-back case.

Another important issue the dependence of the NFT processing
performance on average signal power. As shown in the exam-
ples in Figure 5, the algorithm’s performance depends on the
power, and one can observe worse performance for higher power
compared to low signal powers. This is logical in our noiseless
model scenario—as the power decreases, we transition from a
nonlinear model to a more linear one, which in the limit of very
small average signal powers converges to a fully linear model
that can be solved using the general Fourier transform approach
(compensate dispersion in Equation (2) while the nonlinear term
is zero).

To illustrate the NFT limits depending on the average signal
power, we fix the burst size and vary the average power to observe
the NFT performance. We choose a burst size of 512 symbols,
which has good performance for back-to-back and propagation
cases, allowing us to see the performance across all ranges
from good cases to “complete” failures of NFT algorithms. We
change the average signal power from —5 dBm up to 15 dBm
and perform the same analysis as above for the 16-QAM WDM
signal propagation over 12 spans of 80 km of SSMF. The results
are shown in Figure 9, where each point corresponds to the
statistics of 1000 data points. The colored regions represent the
same logic as before. Both versions of the Darboux method behave

qualitatively the same, but the modified method shows better
results at an average power of up to 10 dBm. From —5 to 3dBm, the
BER remains at the zero level, indicating that the NFT perfectly
restores all the signals. However, the overall accuracy represented
by the average EVM increases with the power increase, and we
inevitably reach the limit case where we start to receive errors (at
4 dBm level). From 4 to 6 dBm, the BER and EVM values remain
at almost the same level, indicating that in this region the NFT
algorithms show stable performance that does not highly depend
on the average signal power. Therefore, within this region, we
can change the average power (depending on practical system
requirements) and maintain the same performance level. With
further increases in power, at 11 dBm, the performance falls below
the FEC level and decreases, as the EVM follows this tendency,
as expected.

In summary, the NFT performance is affected by several factors.
The first factor is the burst size—the larger the burst, the more
discrete eigenvalues and corresponding scattering data need to
be processed. The second factor is the average power—in the
limiting case of small powers, we will have zero or very few
solitons. In contrast, for high powers, we expect more discrete
eigenvalues with larger imaginary parts. These two variables—
the size of the burst and the average signal power—determine
the size and properties of the nonlinear spectral data. Propaga-
tion distance does not affect the nonlinear spectrum, however,
it changes the scattering data used in the INFT algorithm.
Since distance impacts the phase factor, larger values create
more numerical inaccuracies that cannot be correctly handled,
affecting the overall NFT accuracy. Thus, in summary the main
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FIGURE 9 | Results for signal propagation over 960 km for different average power with fixed burst size (T}, = 512T). The left plot displays the
BER (black dots, values on the left axis) and EVM (blue line, values on the right axis) depending on the number of symbols in each burst when the
Darboux method uses all discrete eigenvalues. The right plot displays BER and EVM when the Darboux method uses only those discrete eigenvalues
whose addition does not lead to calculation failure. All data points represent the average values from the statistics of 1000 different burst samples for

each average signal power. The color scheme remains the same: green, yellow, and red zones indicate zero, less, and more than FEC level (4 - 1072) BER,
respectively. The right plot illustrates the proportion of instances where the inverse NFT (INFT) completely failed, returning an entirely incorrect result.

limiting factors of the NFT approach are: burst size, average signal
power, and propagation distance. For each set of parameters, the
performance can be either acceptable or not, and it needs to be
checked for the particular requirements of the system.

6 | Conclusion

In this methodological paper, we discussed several important
aspects and limits of the applications of IST/NFT techniques
in telecommunications. The conventional Fourier transform
was initially developed to solve a particular linear equation by
transforming the studied function into the frequency domain,
where the evolution of each spectral component is trivial. This
decomposition of a function of time into frequency harmonics
is nowadays also widely used for analysis and characterization
of signals, without relation to any evolution. Arguably, the
conventional Fourier transform became a widely used technology
after the development and easy availability of the FFT. As a
matter of fact, the standard Fourier transform is just one of
many ways to transform a function to another domain and
present it as a composition of components in that domain. In
this sense, IST/NFT is also just one of many possibilities to
present a signal through its nonlinear spectrum. IST/NFT can
be used for solving evolution in the integrable problems (in this
case, evolution according to the NLSE), but it can also be used
to facilitate analysis and characterization of signals, similar to
the conventional Fourier transform. The key difference between
standard Fourier and NFT is the availability of devices that
can implement the Fourier transform and the lack of similar
hardware for the NFT. However, the IST/NFT is still a relatively
young technique, and there is no fundamental reason why such
hardware cannot be developed in the future. We do hope that this
work can stimulate interest in developing such devices in future.

We explained in this paper how IST/NFT-based signal processing
can be applied to optical fiber communications systems for the
analysis of conventional optical signals. We discuss various prac-
tical challenges limiting the application of the NFT algorithms
with vanishing boundary conditions in the considered burst mode
transmission. On the one hand, it is important to use longer
bursts to increase SE; on the other hand, longer bursts are
much more challenging to process due to a large number of

discrete eigenvalues. Increasing the average power required to
maintain a larger SNR leads to the same problem of increasing
difficulties of the NFT-based signal processing. We hope that
this work, showing how the remarkable mathematical concept of
IST is developing toward engineering application, will stimulate
the mathematical community to look at the specific challenges
of practical implementation and the engineering community
to learn about opportunities offered by IST/NFT in nonlinear
engineering systems.
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