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Abstract We present a novel fibre-optic transmission system based on the phase modulation via non-

linear Fourier transform for finite-genus signals with no periodicity constraint, which is achieved through

designing a neural network-based receiver and demonstrate, as a proof of concept, signalling below 7%

HD-FEC BER threshold.

Introduction
The sustained growth of global data traffic and

the quest for high-capacity communication net-

works have spurred significant interest in the de-

velopment of advanced fiber optic communica-

tion systems. Central to the design and analy-

sis of these systems is the Nonlinear Schrodinger

(NLS) equation, which models the interplay be-

tween nonlinear and dispersive effects in opti-

cal signal propagation. This paper presents a

pioneering method that combines the nonlinear

Fourier transform (NFT) for finite-genus solutions1

to the NLS equation and a neural network-based

receiver, where we are able to get rid of the de-

sign deficiencies pertinent to the previously pro-

posed communication systems of such a type.

NFT-based fiber-optic communication methods

are based on the idea of transforming NLS equa-

tion for the signal propagation down the fiber

into linear evolutionary equations inside the non-

linear Fourier domain. NFT-based transmission

harnesses the linearizing transform for the NLS

equation, allowing simultaneously compensating

for dispersion and nonlinearity[1]–[3]. However,

despite the promise that the “conventional” NFT

methods have shown[4], there are several limita-

tions that impact their performance. First, high

computational complexity is a primary challenge

of NFT-based methods[5]. Then, conventional

NFT signals are assumed to be transmitted in the

burst mode with substantial guarding intervals to

avoid cross-talk[4]. Moreover, such systems pro-

vide very little control over signal duration and

bandwidth. And last but not least, the presence

of in-line noise can significantly affect the accu-

racy of the NFT technique, subsequently degrad-

1In the mathematical and physical literature, finite-genus
solutions are often referred to as finite-band or finite-gap solu-
tions.

ing the overall system performance[3].

To deal with these issues, the periodic NFT

(PNFT) has been proposed as an alternative

technique. PNFT approach provides control

over the signal’s duration and bandwidth as well

as reduces the processing window at the re-

ceiver and noise impact[6]. The implementa-

tion of the PNFT-based transmission systems has

been thoroughly investigated using the algebro-

geometric approach[7],[8]. The algebro-geometric

approach is linked to the computationally expen-

sive Riemann theta function[9],[10], which makes

this method rather impractical. As an alternative,

the Riemann-Hilbert Problem (RHP) approach

was proposed[11]. It is based on an analytic fac-

torization problem in the nonlinear Fourier domain

and has a computational complexity that is lin-

early proportional to the number of signal sam-

ples, which allows parallelization for efficient com-

puting[6],[12],[13]. However, the methods mentioned

above were constrained to use the exactly pe-

riodic signals, i.e. each supersymbol was ap-

pended with a cyclic prefix, similarly to coherent

optical OFDM.

In this study, we introduce a fiber optic commu-

nication system based on the NFT for finite-genus

NLS solutions, employing the RHP approach at

Tx to modulate the phases and convolutional neu-

ral networks at Rx to demodulate the symbols.

This methodology circumvents the limitations in-

herent in previous techniques[12],[13]: (i) we have

devised a strategy for signal processing that does

not require exact periodicity of a processed su-

persymbol, and (ii) we have surmounted the con-

straints on signal power and phases variation in-

tervals from Refs.[12],[13]. This work addresses

a proof-of-concept system, wherein we present

our design proposal and provide estimates of its

performance. We reserve an extensive array of
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optimization-related inquiries for subsequent re-

search.

Channel model and finite-genus solutions
The governing equation for signal propagation in

an optical fiber is the NLS equation, written as:

iqz − β2

2
qtt + γ|q|2q = n(t, z), (1)

where q(t, z) denotes the signal envelope, with z

being the coordinate along the optical fiber and

t representing the temporal variable, β2 is the

chromatic dispersion, γ is the nonlinearity coef-

ficient, n(t, z) is the amplified spontaneous emis-

sion noise term.

Utilizing the RHP approach, we construct

genus-N solutions associated with their main

spectrum[13], consisting of points on the complex

upper half-plane {λj ∈ C}Nj=0 and their complex

conjugates. A particular genus-N solution is then

specified by N + 1 real-valued parameters, re-

ferred to as phases ψj , each lying in the interval

[0, 2π), see Refs.[13]–[15] and references therein.

We control the signal’s duration and power by

adjusting the main spectrum. The set of main

spectrum points {λj}Nj=0 determines the frequen-

cies Cf of N + 1 partial nonlinear modes for the

genus-N solution: {Cf
j ∈ R}Nj=0 which are gen-

erally incommensurable. For our system, we pro-

cess the largest period corresponding to the low-

est Cf . To adjust the signal’s power, we manipu-

late Imλj .

As genus-N signals propagate through an op-

tical fiber, the phases of partial nonlinear modes

exhibit a trivial evolution:

ψj(z) = ψj(0) + (Cg
j − 2g0)z, (2)

where z represents the propagation distance and

the constants g0 and {Cg
j ∈ R}Nj=0 are determined

by the main spectrum. This property is exploited

to compensate for the signal’s evolution at the re-

ceiver.

Convolutional neural network-based receiver
The core component of the proposed communi-

cation system is a receiver that relies on convo-

lutional neural networks (CNNs)[14]. CNNs have

demonstrated their effectiveness in processing

signals within the context of NFT systems[16]–[18].

Our receiver processes the signals after their

propagation through an optical fiber, and extracts

the central portion of each supersymbol corre-

sponding to the largest symbol’s period, effec-

tively removing the extension prefixes used to

protect the supersymbols from overlapping/cross-

talk along the propagation. The processed sig-

nal is then fed to the CNN’s input layer, using

128 samples per signal. The goal of the CNN is

then to retrieve the N + 1 phases corresponding

to the partially nonlinear modes embedded within

the genus-N supersymbol.

The neural network architecture we use is sim-

ilar to that from Ref.[14]; it comprises three con-

volutional layers and one fully-connected layer,

Fig. 1. The CNN’s hyperparameters have been

optimized using Bayesian optimization[16],[19] for

the specific symbols used in the transmission sim-

ulations. It turned out that the optimal distribu-

tion of hyperparameters is the same for all power

levels studies and the resulting hyperparameter

values are presented in Table 1. For further de-

tails regarding the implementation of the CNN see

Ref.[14].

Fig. 1: Schematic of the CNN-based receiver used in our
work for soft symbols.

The CNN produces complex-valued outputs

that represent points on the unit circle. This

choice is motivated by the need to ensure the pe-

riodicity of the labels corresponds to the phase

periodicity of the solution. From the given points

on the unit circle, the phases can be unambigu-

ously retrieved.

Filters Kernel size Activation

1 conv. 94 3 tanh

2 conv. 112 17 tanh

3 conv. 145 18 sigmoid

Fully-con. 128 neurons sigmoid

Tab. 1: The hyperparemeters of the receiver CNN in Fig. 1.

Performance estimation
In the fiber-optic communication system illus-

trated in Fig. 2, we employ genus-4 solutions

to the NLS equation (5 nonlinear modes per su-

persymbol). By manipulating the main spectrum

of such solutions we can tune the signal dura-

tion and power, while the phases are used for

data modulation. The following configuration of
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Fig. 2: Communication system principal scheme.

the main spectrum λ has been used for N = 4:

λ = {−2 + ai,−1 + ai, ai, 1 + ai, 2 + ai}, (3)

where parameter a defines the power of the sig-

nal. The signal’s duration (the longest period) was

fixed to 1 ns.

Specifically, we implement 16-phase shift key-

ing (16-PSK) modulation for each phase of the

genus-4 solutions (5 phases), thus yielding 5 × 4

bits per supersymbol. To prevent signal over-

lap during propagation, extension prefixes are in-

corporated between supersymbols. To ensure

that the central parts of adjacent signals do not

overlap, we select extension prefixes substantially

larger than required[2],[8]. Each supersymbol ex-

tends the duration of the central part by a factor

of five. These supersymbols are then concate-

nated into lengthy sequences and input into the

system as a single signal.

We investigate the propagation of optical sig-

nals in a system consisting of 15 spans (80 km

each), resulting in an overall system length of

1200 km. The system employs standard single-

mode fibers (SSMF) characterized by dispersion

parameter β2 = −21.7 ps2/km and nonlinear co-

efficient γ = 1.3W−1km−1. An ideal distributed

amplification model is utilized, with noise intro-

duced at the end of each span. The noise power

is expressed as NASE = αL�νsKTNF , where

α = 0.2 dBm/km is fiber loss, L = 80 km denotes

the span length, �νs is photon energy, KT = 1.13,

and NF = 4.5 dB is the noise figure.

For each power level, we evaluate the BER as

a metric for efficiency as a direct count of er-

ror bits within a signal comprising 2 × 104 sym-

bols. The system performance, characterized by

the relationship between BER and signal power,

is depicted in Figure 3. Our results demonstrate

successful data transmission at power levels of

≈−6.3 dBm and ≈−5 dBm below the FEC thresh-

old, with a value of 3.8 × 10−3 and a 7% over-

head[20].

Fig. 3: BER versus signal power (lower axis) and
corresponding values of Imλ (upper red axis). The black
dashed line depicts 7% HD-FEC threshold[20]. The inset

illustrates the symbol’s phase distribution corresponding to
the optimal power level ≈ −6.3 dBm.

Conclusion
Although finite-genus solutions have been em-

ployed as data carriers in previous communica-

tions studies, those systems suffered from addi-

tional constraints imposed on the solution classes

utilized and on phases allowed extent. Our

novel approach, which utilizes CNN for phase re-

trieval at the Rx, relieves the finite-genus signals-

based communications from the limitations of

prior works. The general and adaptable nature

of the proposed methodology makes this system

both efficient and versatile for application in real-

world systems.

Our proof-of-concept research aims to demon-

strate the feasibility of data transmission below

the 7% HD-FEC threshold and to lay the ground-

work for future studies. The presented commu-

nication system can be significantly enhanced

through the following approaches: (1) more ex-

tensive engagement of neural networks not only

for phase retrieval of signals but also for address-

ing system imperfections, such as non-zero gain-

loss profiles and noise, (2) comprehensive opti-

mization of finite-genus solution parameters, in-

cluding genus, main spectrum configuration, and

cyclic extension length, and (3) developing the-

ory for finite-genus solutions applied to the Man-

akov system, which describes data propagation

in optical fibers with two polarizations. Address-

ing these crucial issues requires further investiga-

tion.
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transmission based on exact inverse periodic nonlinear
fourier transform, part i: Theory”, Journal of Lightwave
Technology, vol. 38, no. 23, pp. 6499–6519, 2020. DOI:
10.1109/JLT.2020.3013148.

[8] J.-W. Goossens, Y. Jaouën, and H. Hafermann, “Ex-
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