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Abstract

The thesis focuses on addressing the challenges faced by optical fiber networks in keeping

up with the growing demand for data transfer, especially with the advent of 5G/6G and the

Internet of Things (IoT). The rapid expansion in data transfer requirements highlights the lim-

itations of current optical fiber networks and the necessity for improvements in data encoding

techniques, spectrum utilization, and signal clarity over long distances. The thesis contributes

to this field by developing new methods for applying the Nonlinear Fourier Transform (NFT)

to continuous signals, improving signal processing algorithms, and using Machine learning

(ML) to understand complex patterns and make data-driven decisions to optimize optical

communication systems.

The work is divided into two primary sections. The first section delves into advanced NFT

techniques, including their application in optical fiber channel modeling for single and dual-

polarization systems, signal processing with a sliding window technique combined with NFT,

exploring solitonic components in optical signals, and the use of neural networks for NFT to

work with noisy signals. The second section is dedicated to the role of ML in optimizing optical

communication systems, discussing the new High-Performance COMmunication library (Hp-

Com) framework for simulating optical channels, the use of Gradient Boosting for nonlinear

equalization, studying received symbol distributions using the Gaussian Mixture Model, and

summarizing findings with insights for future research. The thesis outlines the creation of in-

novative techniques to improve optical fiber systems, thus aiding the continued development

of the digital world by handling the ever-increasing demands for data transmission.

Keywords: Optical Fiber Communications, Nonlinear Fourier Transform, Nonlinear Equaliza-

tion, Machine Learning, Signal Processing Algorithms
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Introduction

Motivation

Optical fiber channels play a crucial role in today’s communication systems, providing the

high-speed data transmission worldwide. These channels are not just for data transfer—they

are vital for maintaining global connections, contributing to economic development, and

supporting essential services in healthcare, finance, education, and government. The rapid

expansion of online services, the Internet of Things (IoT), and the increasing need for greater

bandwidth highlight the essential role of optical fiber channels in the modern digital era [1, 2].

With the rise of new technologies like 5G/6G, cloud services, and more devices joining the

internet, our current optical fiber networks face tough challenges to keep up with the growing

demand for data transfer [3]. These challenges include limits on how much data can be sent

through and the need to expand the use of the available spectrum. They also involve complex

algorithms and the planning of networks. Solving these problems is critical to keep up with the

digital world’s rapid growth and to enable new advancements in communication technologies.

People from universities, companies, and governments are working hard to overcome the

challenges faced by optical fiber networks. There is a strong push in research to find new

ways to improve the ability of these networks to handle more data, work more efficiently,

and be more reliable. Efforts include looking into better ways to encode data, creating new

types of fibers, coming up with smarter network planning methods, and using new tools like

machine learning and the Nonlinear Fourier Transform (NFT) to get the most out of optical

fiber communications [4].

Optical fiber systems face many challenges, especially the need to increase their capacity to

keep up with the growing demand for faster data speeds. One way to tackle this is to use more

complex data encoding techniques, like advanced QAM [3]. We’re also looking to use more of

the light spectrum for data transmission, which means we would use not just the usual C-band

but also the L, S, E, and O bands. This requires making new types of amplifiers that work

with these broader ranges of light. We use methods like Forward error correction (FEC) and

technologies like coherent detection to make signals clearer and reduce data errors over long

distances . Expanding the spectrum used in optical fiber communication involves several areas

of development. One area is improving fiber amplifiers to work with a broader range of light
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frequencies, where technologies like rare-earth-doped fibers and semiconductor amplifiers

are the key [3]. Creating components that can operate at these new frequencies is essential

to use the entire available spectrum and increase the amount of data transmitted. Alongside

hardware, we also need better algorithms to manage these new frequencies efficiently.

Another significant step is to create better fibers to overcome the limits of current ones. This

includes making fibers with less loss and better handling of light interactions that can distort

the signal. Efforts in this direction include researching fibers that lose less signal over distance

and using Space Division Multiplexing (SDM) to send more data through the same cable [5].

Developing algorithms to handle nonlinearity in optical channels is essential. The Nonlinear

Fourier Transform (NFT) is a mathematical tool that extends the concept of the classical

Fourier transform to include the effects of nonlinearity in signal processing. In optical com-

munication systems, nonlinearity can significantly impact signal propagation in optical fibers,

often leading to distortion that can limit the performance and capacity of these systems. [4].

NFT takes into account the nonlinear nature of the optical fiber medium. By analyzing the

signal in a nonlinear spectral domain, it can effectively describe the evolution of complex

waveforms that are affected by the fiber’s nonlinearity, thereby mitigating distortion. Tradi-

tional methods of communication approach the Shannon limit because they are based on

linear signal processing. NFT offers a way to possibly exceed this limit by using the fiber’s

nonlinearity to our advantage rather than treating it as a hindrance. Moreover, NFT naturally

leads to the concept of solitons [6], which are stable wave packets that can travel over long

distances without changing shape. NFT-based systems can use solitons to carry information

more reliably over long distances. NFT can be used to improve signal processing algorithms.

By transforming the data into the nonlinear domain, NFT allows for the development of

new signal processing algorithms that are better suited to dealing with the specific types of

distortions and noise that occur in optical fibers. This can lead to improved spectral efficiency

by allowing more data to be packed into the same bandwidth.

Machine learning (ML) is becoming an essential tool for optical communication systems

due to its ability to understand complex patterns and make data-driven decisions. In the

field of optical communications, where signals can be distorted by a variety of factors such

as fiber nonlinearity and channel noise, ML stands out as a solution that can adaptively

compensate for these impairments without explicit programming. This adaptability is crucial,

as it allows communication systems to self-optimize in real-time, ensuring the transmission of

data with higher accuracy and speed. Moreover, ML’s predictive capabilities enable proactive

maintenance, reducing downtime and enhancing the reliability of communication networks.

The utilization of ML in optical communication systems is not just about solving current

challenges; it’s also about paving the way for future advancements. As data traffic volumes

continue to grow, ML provides a scalable approach to managing this increase efficiently. By

analyzing vast amounts of transmission data, ML algorithms can predict and manage network

loads, optimize routing, and even aid in the design of new fiber optic materials and structures.
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This foresight is invaluable for keeping communication systems ahead of the curve, making

ML not just a tool for maintenance but also a driving force for innovation in the field of optical

communications.

Bringing together these advancements is key to pushing optical fiber communications forward.

These technologies ensure that these systems are strong and ready for the growing demands

of data transmission. With these tools, we can improve how optical fiber systems work,

supporting the ongoing development and growth of our digital world.

Applications in Diverse Fields

Nonlinear Schrödinger Equation and the Manakov system have revolutionized our under-

standing of nonlinear wave dynamics in various physical settings. These mathematical models

capture the essence of wave propagation influenced by nonlinear and dispersive effects, form-

ing the backbone of numerous technological advancements and scientific discoveries [7].

The Nonlinear Fourier Transform stands out as a transformative tool, similar to the classical

Fourier Transform but for nonlinear systems, enabling the decomposition of complex wave

fields into simpler, analyzable components.

Consider the Bose-Einstein Condensates (BECs), where the NLS equation, known as the

Gross-Pitaevskii equation, provides insights into the macroscopic wave function at zero

temperature. Efforts to solve the GPE analytically for ultracold atom clouds in the BEC phase

have utilized variational techniques, offering insights into the dynamics of these systems [8, 9].

The interplay between kinetic energy, trapping potential, and particle interactions is finely

detailed, paving the way for the exploration of quantum effects such as soliton interactions

and vortex formations. The NFT’s power is magnified by Neural networks, which can predict

the evolution of these phenomena from empirical data, even when the system’s complexity

exceeds traditional analytical capabilities. For instance, Neural networks could forecast the

dynamics of solitons in BECs, providing a new lens through which quantum turbulence and

particle interactions are viewed.

In plasma physics and water wave studies, the NLSE models the behavior of envelope solitons,

essential for grasping Langmuir waves and modulational instability. It also aids in under-

standing the genesis of rogue waves and their modulation on the ocean’s surface. The spatial

NLSE’s utility in modeling deterministic freak wave generation in water at MARIN illustrates

its practical application, guided by the theory of linear perturbation analysis and solitons on

a non-vanishing background [10–12]. The NLSE has been used as a framework for studying

the emergence of rogue waves in the ocean, attributed to nonlinear energy transfer processes,

through both deterministic and stochastic approaches [13–15]. Here, NFT, coupled with

Neural network analysis, unravels the nonlinear spectral dynamics, facilitating the prediction

of wave behavior under diverse conditions—a crucial step for designing plasma-based devices

or mitigating rogue wave impacts.
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The Nonlinear Fourier Transform offers a novel approach to analyzing complex wave dynamics

in superconductivity, building on the foundational work with the nonlinear Klein-Gordon and

sine-Gordon equations. These equations help us understand how waves move and interact

in superconductors and have been crucial in studying phenomena like crystal dislocation

and particle interactions [16–20]. A key area where NFT shows promise is in examining the

Josephson effect, observed in Josephson junctions—quantum devices made of superconductor

electrodes separated by a barrier. This effect, where current flows without voltage, highlights

the quantum mechanical nature of superconductivity [21, 22]. The sine-Gordon model, used

to describe Josephson junctions, aligns well with NFT’s capabilities, especially in analyzing

superconducting soliton oscillators [23]. Further, the connection between the sine-Gordon

system and the NLSE in small-amplitude scenarios opens up possibilities for using NFT

to study superconductors under external influences, like alternating current fields. This is

where Neural networks come into play. By performing NFT, Neural networks can analyze

complex superconducting systems, predict their behavior, and identify patterns that are not

immediately apparent [24, 25]. Recent advancements in quantum graph theory illustrate how

NFT, coupled with Neural networks, can be particularly effective in superconductivity research.

For example, studying localized wave solutions in tricrystal Josephson junctions showcases the

potential of Neural networks to understand the interactions within superconducting materials

[26–29].

Nonlinear optics, another area enriched by the NLSE, sees the formation of spatial and tempo-

ral solitons in nonlinear birefringent media. Optical rogue waves, modeled by a generalized

NLSE and supported by experimental data from highly nonlinear microstructured optical

fibers, exemplify the fusion of theory and practice in this field [30–33]. The introduction of

Neural networks to perform NFT provides a groundbreaking method for analyzing light-matter

interactions, facilitating the development of advanced optical devices. In quantum fluids,

NFT aids in understanding superfluid turbulence and vortex interactions, crucial for quantum

computing and simulation technologies.

The NLS equation’s application extends to atmospheric sciences, modeling nonlinear wave

propagation including internal waves and solitons in stratified fluids. Leveraging NFT with

Neural networks allows for enhanced weather prediction models and a deeper understanding

of climate dynamics.

The methods from my thesis, like using Neural networks and a window approach, offer new

ways to study and predict complex system behaviors. These tools are great for cases where we

might not know the exact math or when systems don’t fully match the usual conditions for NFT.

Neural networks can find new patterns in data, helping us understand phenomena like rogue

waves better. The window approach lets us study complex systems more easily, leading to new

research and technologies in various fields, from environmental science to quantum tech and

communications. Using NLSE and NFT methods in areas beyond optical communications

shows how versatile these approaches are for studying wave dynamics. This research not

only adds to academic knowledge but also opens up possibilities for new technologies and
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applications in many physical systems.

Nonlinear Fourier Transform in Systems with Higher-Order Effects

Integrable systems, characterized by an infinite number of conservation laws, are idealized

models where soliton solutions can propagate without changing shape due to exact balance

between nonlinearity and dispersion. The NFT provides a powerful framework for analyzing

these systems by transforming the Nonlinear Schrödinger Equation, a model governing soliton

dynamics in fiber optics and other fields, into a spectral problem. This transformation enables

the study of the system’s evolution in terms of its spectral data, simplifying the analysis of

soliton interactions and stability.

However, real-world systems are rarely perfectly integrable due to higher-order effects like

attenuation, higher-order dispersion, and nonlinearity. These perturbations introduce devia-

tions from the ideal soliton dynamics predicted by the NLSE [34]. For instance, higher-order

dispersion can lead to the emission of radiation during soliton propagation, altering the soli-

ton’s shape and velocity. Similarly, higher-order nonlinearity can cause soliton self-frequency

shift, a phenomenon where the central frequency of a soliton shifts during propagation.

Incorporating these higher-order effects into the NFT analysis requires perturbative tech-

niques. One approach is to treat these effects as small perturbations to the integrable system

and study their impact on the spectral data. For example, the effect of perturbations on soliton

parameters (such as amplitude, width, and velocity) can be analyzed by examining how the

spectral data evolves due to these nonidealities [35–37]. This perturbative analysis helps in

understanding the stability of solitons under real-world conditions and in designing optical

systems that can mitigate the adverse effects of higher-order corrections.

A concrete example of this analysis is seen in the study [38] of fiber optics, where solitons

are used for long-distance communication. The presence of higher-order dispersion and

nonlinearity in optical fibers affects the soliton’s shape and speed, leading to signal distortion.

By applying NFT with perturbative corrections [39], engineers can predict these changes and

design optical systems that compensate for these effects, ensuring stable soliton propagation

and reliable communication.

In the domain of soliton dynamics within nearly integrable systems, a significant body of

research has illuminated the intricate effects of higher-order corrections. The work of Kodama

and Hasegawa in 1982 [40], for example, delves into the realm of optical solitons in monomode

fibers, focusing on how dissipative damping can be counteracted through periodically ap-

plied stimulated Raman scattering. This study stands as a cornerstone in understanding the

interplay between soliton stability and external perturbations.

Further extending the discourse [41] embarked on a numerical exploration of a compensation

model grounded in the application of a small-amplitude Raman pumping wave. Their findings
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offer a deeper comprehension of how external forces can mold soliton dynamics, specifically

highlighting the potential for dissipation to be offset in a controlled manner.

The analytical frameworks provided by Kaup and Newell in the late 1970s [24, 42] offer another

layer of insight into the perturbed soliton solutions. Their work, through a dynamical systems

lens, sheds light on the resilience and behavioral tendencies of solitons when subjected to

external perturbations, enriching the dialogue on soliton dynamics with analytical rigor.

For a deeper dive into the latest studies, some numerous contemporary articles and findings

shed light on advancements in this field. The article [43] investigates the emission of radiation

during fast collisions between two solitons governed by the nonlinear Schrödinger equation

with weak cubic loss. Employing perturbation theory and numerical simulations, the study

reveals the impact of cubic loss on soliton dynamics, emphasizing the balance between conser-

vative and dissipative perturbations in shaping radiation outcomes. This research contributes

to the broader understanding of soliton interactions in nonlinear optical systems. The article

[44] explores the effects of fiber optic loss on the dynamics of two-soliton states in nonlinear

Schrödinger equations. It particularly focuses on how loss modifies the eigenvalue spectrum

of soliton compounds, leading to significant changes in their behavior. This investigation

reveals that fiber loss can enhance one soliton at the expense of another and transform static

solitons into pairs with distinct velocities, providing new insights into soliton dynamics and

their application in fiber-optic communications.

These studies collectively contribute to a nuanced understanding of how higher-order effects,

ranging from external perturbations to dissipation, shape the evolution of solitons in nearly

integrable systems. The interplay between theory and application revealed through these

works underscores the dynamic nature of soliton research and its relevance to fields as diverse

as optical communications and fluid dynamics. Through a careful examination of these contri-

butions, one can appreciate the breadth of inquiry and the depth of discovery that characterize

the ongoing exploration of soliton dynamics in the face of higher-order corrections.

Another book "Nonlinear Waves in Integrable and Nonintegrable Systems" by Jianke Yang

[45] explores the mathematical and computational approaches to understanding nonlinear

waves in both integrable and nonintegrable systems. It addresses significant problems in

physical, life sciences, and engineering through analytical and computational techniques,

promoting an interdisciplinary approach. The book covers various topics including the

derivation of nonlinear wave equations, integrable theory, soliton perturbation theories,

theories for nonintegrable equations, nonlinear wave phenomena in periodic media, and

numerical methods for studying nonlinear wave equations.

The Nonlinear Fourier Transform emerges as a robust tool for analyzing integrable systems

even when higher-order effects—such as attenuation and higher-order dispersion—come into

play. Through the detailed studies and examples provided, it’s evident that NFT can effectively

account for these perturbations, enabling a more accurate analysis of soliton dynamics and

interactions in real-world systems. By extending traditional NFT techniques with perturbation
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theory, researchers can predict and mitigate the impact of these non-idealities, ensuring the

stability and reliability of soliton-based technologies in various applications, from optical

communications to quantum computing.

Contribution

The contribution of this thesis can be summarized as follows:

• We proposed and developed a new method that applies the NFT to continuous signals.

This method involves pre-processing the signal using Chromatic dispersion compen-

sation (CDC) before applying NFT. The outcomes for single polarization signals have

shown better performance than Digital back-propagation (DBP) with three steps per

span, and for dual polarization, the results are compared with DBP with two steps per

span. We have made the developed code publicly available.

• Through the use of NFT, we analyzed WDM and Orthogonal Frequency Division Mul-

tiplexing (OFDM) symbols to determine the conditions for the presence of solitons.

Our analysis of WDM signals revealed that a dominant portion of the energy (99%) is

associated with soliton components.

• We introduced a new approach for conducting both forward and inverse NFT operations

using NNs. The chosen NN architecture was further optimized and has demonstrated

effectiveness in working with noisy signals, where deterministic NFT algorithms were

unsuccessful.

• A new GPU-accelerated framework, High-Performance COMmunication library (Hp-

Com), was introduced for simulating optical fiber channels with various characteristics.

This framework serves as a data mining tool for subsequent research, and we have

provided code examples along with the resulting data and performance metrics.

• We identified Gradient Boosting (GB) as a promising technique for nonlinear equaliza-

tion within optical channels.

• We demonstrated the performance of NNs across a range of channel and signal parame-

ters, showcasing their versatility and effectiveness.

• A data-driven approach was employed to uncover new complex structures within the

received symbols’ constellation, which arise from the nonlinearity of optical fibers. This

non-Gaussian structure was evident across all examined “triplets” of received points.

• Furthermore, we provided a demonstration of real-time optical channel simulation as

an additional resource.
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Thesis outline

This thesis is organised as follows.

The thesis divided into two parts: “Advanced Nonlinear Fourier Transform Techniques” and

“Machine Learning for Optimizing Optical Communication Systems”.

In the first part

• Chapter 1 provides a comprehensive introduction to the Nonlinear Fourier Transform

(NFT) and its application in modeling optical fiber channels for both single and dual-

polarization systems. The chapter further discusses various modulation formats and the

performance metrics relevant to this study, concluding with an in-depth look at Wave-

length Division Multiplexing (WDM) and Orthogonal Frequency-Division Multiplexing

(OFDM), which are central to the research conducted in this thesis.

• Chapter 2 delves into the processing of optical signals using a sliding window technique

and introduces an enhanced method combining Chromatic Dispersion Compensation

(CDC) with NFT. Results for WDM signals in both single and dual-polarization systems

are presented at the end of this chapter.

• Chapter 3 explores the solitonic components of optical signals, beginning with the

establishment of criteria for energy and power levels required for soliton existence.

This is followed by an analysis of individual OFDM and WDM symbols to assess the

probability of soliton occurrence based on symbol parameters. The chapter proceeds

with an investigation into the presence of solitons in continuous WDM signals and the

distribution of their properties.

• Chapter 4 wraps up the first part of the thesis by introducing the application of Neural

Networks (NN) for NFT. It opens with the motivation behind using NN and demonstrates

that CNNs can effectively compute NFT. The approach is further validated for its ability

to identify solitonic components within a signal. The final section of this chapter

provides detailed findings on the optimal structure for NN and its capability to manage

NFT in the presence of noise.

In the second part

• Chapter 5 presents the High-Performance COMmunication library (HpCom) framework,

a new tool for simulating optical channels. It begins with an overview of the simula-

tion methods, discusses the architecture of the framework, and demonstrates how it

can speed up simulations. The chapter concludes with examples demonstrating the

framework’s application in simulating optical communication systems.

• Chapter 6 introduces the use of Gradient Boosting (GB) for nonlinear equalisation in

optical communication systems. The chapter progresses from the theoretical basis of
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gradient boosting to its practical application in complex systems, analyzing its compu-

tational complexity. Results showcase the efficacy of GB across various signal powers

and transmission distances, and the chapter ends with a example of the broader use of

machine learning methods like Neural network (NN) for signal equalization tasks.

• Chapter 7 delves into the study of received symbol distributions in optical communica-

tion systems, outlining potential distribution types for initial analysis. It elaborates on

employing the Gaussian Mixture Model (GMM) to describe and emulate the distribution

of the received constellation.

• Chapter 8 wraps up the thesis with a summary of the findings and provides insights into

future research directions within the field of optical communications.
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1 Nonlinear Fourier Transform Funda-
mentals

1.1 Channel models

The Nonlinear Schrödinger Equation (NLSE) and the Manakov Equation (ME) are two com-

monly used mathematical models for describing the behavior of light propagation in a single-

mode optical fiber, including the effects of dispersion and nonlinearity [46]. The NLSE, being

a generic model describing the interplay between the dispersive and nonlinear effects, is

applicable to the description of a vast number of physical phenomena, ranging from the dy-

namics of magneto-ordered systems [47] to hydrodynamics [48]. It also serves, under certain

assumptions, as a principal master model governing the evolution of a single-polarisation

slow-varying light envelope propagating along the single-mode fibre [49, 50]. In the context of

optical fiber transmission, the Schrödinger equation is used to describe the evolution of the

slowly varying optical field envelope, A(z, t ), in the presence of dispersion and nonlinearity.

The general form of the Schrödinger equation for a single-polarization signal is as follow:

∂A

∂z
=−α

2
A− i

β2

2

∂2 A

∂t 2 + iγ|A|2 A, (1.1)

where z represents the distance along the fiber, t is time, β2 is the Group velocity dispersion

(GVD) parameter, γ is the nonlinear coefficient, and A is the complex envelope of the optical

field.

The Manakov Equation is a more complex model that is used to describe the behaviour of light

propagation in a two-polarisation optical fiber. It considers the effects of polarization-mode

dispersion and nonlinear interactions between the two polarizations. The Manakov Equation

for a two-polarization signal is as follows:

∂Ax

∂z
=−α

2
Ax − i

β2

2

∂2 Ax

∂t 2 + iγ
8

9

(︁|Ax |2 +|Ay |2
)︁

Ax ,

∂Ay

∂z
=−α

2
Ay − i

β2

2

∂2 Ay

∂t 2 + iγ
8

9

(︁|Ax |2 +|Ay |2
)︁

Ay , (1.2)
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where Ax and Ay are the complex envelopes of the two polarizations. This model includes

attenuation and is applied in simulations of Erbium-Doped Fiber Amplifier (EDFA).

It is important to specifically address the scenario where α = 0, which is relevant for NFT

systems and their analysis. The use of NFT in the presence of attenuation necessitates extra

steps, including the estimation of an effective nonlinear coefficient γeff. While this discussion

is outside the current document’s focus, it certainly represents a promising area for future

research that could build upon the findings presented here.

In this study, we have simplified the channel model to exclude attenuation, a necessary

simplification for applying NFT to optical communications signals. The Nonlinear Schrödinger

Equation (NLSE) for a channel model without attenuation is presented in dimensioned units

as:

i
∂A

∂z
− β2

2

∂2 A

∂t 2 +γ|A|2 A = 0, (1.3)

To effectively utilize NFT, we introduce non-dimensional variables using characteristic scales

like the pulse width or symbol interval T0, dispersion length LD = T 2
0 /|β2|, and charac-

teristic power P0 = 1/(γLD ). These lead to the following dimensionless equation, where

σ= sign(−β2γ) represents either focusing (σ= 1) or defocusing (σ=−1) dispersion:

i
∂q

∂ζ
+ σ

2

∂2q

∂τ2 +|q|2q = 0, (1.4)

In the situation where there is no signal loss (α= 0), the Manakov Equation (ME) equations

are:

i
∂Ax

∂z
− β2

2

∂2 Ax

∂t 2 +γ8

9

(︁|Ax |2 +|Ay |2
)︁

Ax = 0,

i
∂Ay

∂z
− β2

2

∂2 Ay

∂t 2 +γ8

9

(︁|Ax |2 +|Ay |2
)︁

Ay = 0, (1.5)

with the same symbol interval T0, the dispersion length LD = T 2
0 /|β2| reference power level

now scaled with P0 = 1/( 8
9γLD ). These choices allow us to define scaled variables τ = t/T0,

ζ= z/LD , and qx,y = Ax,y /
⎷

P0:

i
∂qx

∂ζ
+ σ

2

∂2qx

∂τ2 + (︁|qx |2 +|qy |2
)︁

qx = 0,

i
∂qy

∂ζ
+ σ

2

∂2qy

∂τ2 + (︁|qx |2 +|qy |2
)︁

qy = 0. (1.6)

For clarity, throughout this thesis, we will refer to the scaled fields q (from A) or qx,y (from

Ax,y ) simply as ’the signal’.

For the NFT, we work with the NLSE and the ME as set out in Eqs. (1.4) and (1.6). It’s important

to note that we can adjust the equations using a normalization factor of 2. This means setting
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the dispersion length LD and the characteristic power P0 as LD = 2T 2
0 /|β2| and P0 = 2/( 8

9γLD ),

respectively. After normalization, the fields qx,y = Ax,y /
⎷

P0 for dual-polarization or simply

q = A/
⎷

P0 for a single polarization remain the same. The normalized Nonlinear Schrödinger

Equation and Manakov Equation equations are then written as:

∂q

∂ζ
+σ∂

2q

∂τ2 +2|q|2q = 0, (1.7)

for a single polarisation, and for dual polarisation:

i
∂qx

∂ζ
+σ∂

2qx

∂τ2 +2
(︁|qx |2 +|qy |2

)︁
qx = 0,

i
∂qy

∂ζ
+σ∂

2qy

∂τ2 +2
(︁|qx |2 +|qy |2

)︁
qy = 0, (1.8)

respectively.

1.2 Nonlinear Fourier Transform

1.2.1 Introduction

Quite often, the evolution of nonlinear systems is well approximated by the nonlinear partial

differential equation (PDE). Evidently, there is no universal theory for the solution of nonlinear

PDEs, but there exists a distinguished class of nonlinear equations that can be solved with

a mathematical rigour: the so-called integrable systems. The history of integrable PDEs

started in the 1960s when Gardner et al. [51] discovered a method for finding the infinite

families of exact solutions for the Korteweg-de Vries equation. Their method termed the

inverse scattering transform, can be deemed as the generalisation of the conventional Fourier

Transform (FT) to the nonlinear systems. Thus, the name Nonlinear Fourier Transform (NFT)

for it is often used nowadays, especially in the signal processing literature [4, 52]. Shortly after

the integration of the Korteweg-de Vries equation, Zakharov and Shabat developed the inverse

scattering machinery (i.e. the NFT method) for yet another celebrated PDE: the Nonlinear

Schrödinger Equation (NLSE) [53], which will be the focus of our current study.

In a nutshell, for an integrable PDE there exists the canonical transform of dependent vari-

ables, converting the original nonlinear system into the so-called action-angle variables; the

evolution of the latter is governed by a set of uncoupled trivial (linear) differential equations.

Mathematically, this can be treated as the effective linearisation of a nonlinear integrable PDE

[54, 55]. For our work, it is important that we know the explicit form of the NFT operations

attributed to the NLSE.

Withing modern optical communications, the NFT is used not as a tool for the NLSE solution,

but as a signal processing method [4, 52]. This concept originated from the work of Hasegawa

and Nyu [56], who proposed to depart from considering the time domain solitonic shapes [50],
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but rather use the nonlinear spectrum (the so-called eigenvalues) for the data modulation and

transmission. Over the last decade, the NFT-based optical transmission techniques have been

resurrected and greatly extended [4, 57]. The most efficient NFT-based optical transmission

method is the so-called Periodic Nonlinear Fourier Transform (PNFT) [52], within which we

directly modulate the parameters of the nonlinear modes that emerge from the Nonlinear

Fourier (NF) signal decomposition. When the optical field propagates down the fibre link,

the evolution of the nonlinear modes inside the NF domain stays almost linear, in contrast

to the truly nonlinear evolution of signal in the space-time domain. Due to this property,

we can theoretically get rid of the infamous nonlinear cross-talk degrading the transmission

performance at high signal powers[58].

Generally, when considering the NF decomposition of an arbitrary rapidly decaying wave-

form, we can have two distinct coexisting parts of the NF spectrum: the continuous part,

describing quasi-linear dispersive waves, and the discrete part, corresponding to solitonic

modes [4, 52, 54, 55]. The continuous part of NF spectrum is represented by the complex-

valued function r (ξ) ∈C of a real argument ξ ∈R, where ξ is called the spectral parameter; r (ξ)

is called the reflection coefficient, and ξ emerges as the nonlinear analogue of a conventional

Fourier frequency. This NF spectrum part converges to the conventional FT of our signal in the

low-power limit [59]. The discrete part consists of the complex eigenvalues ξn ∈C+, located in

the upper complex half-plane, and the associated norming constants rn (spectral amplitudes)

[60]. The graphical summary of the general NF spectrum structure is given in Fig. 1.1. However,

we point out that it is exactly the utilisation of the continuous NF spectrum part [61–68] that

resulted in the breakthrough in the PNFT technology: this idea, mentioned already in early

NFT transmission-related works [52, 59], is in stark contrast with the progenitor soliton-based

transmission methods [50]. We mention that the continuous NF spectrum modulation using

the special technique coined b-modulation [69–72] has provided the highest PNFT data rates

so far [57, 73]. Finally, we note that for the PNFT based on the discrete NF spectrum [74–

76], the achieved data rates have been noticeably lower than those for the modulation of

continuous NF spectrum, see the comparison in [57, Fig. 1].

discrete eigenvalues

continuous spectrum

Im(ξ)

Re(ξ)

|r
(ξ

)|

discrete spectrum
{r  }n

∈С
{ξ  }

n
∈С+

{ξ }∈R

Figure 1.1: The schematic showing the different coexisting parts of a general NF spectrum: the
discrete part, represented by the eigenvalues ξn and respective norming constants rn , and the
continuous part, shown as the function |r (ξ)| on the real ξ-axis.
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The PNFT transmission method relies on the (approximate) integrability of our transmission

channel, i.e. we inherently assume that Eq. (1.4) is a very accurate model describing the signal

evolution down the fibre. However, aside from second-order dispersion and Kerr nonlinearity

present in (1.4), in realistic fibre-optic systems, there are numerous other effects affecting

signal’s propagation. Optical noise inevitably arising during the amplification process [49] is

one of the key challenges in optical communications. The noise results in random NF spectrum

disturbances [77, 78], imposing limits on the PNFT transmission quality. Another widespread

deviation from idealised model (1.4) is the non-zero nonuniform gain-loss profile occurring

in realistic systems for both lumped [63, 67] and distributed [64] amplification schemes. We

also mention the effects of polarisation mode dispersion [79, 80], higher-order chromatic

dispersion [79], and component-induced impairments, to itemise just several important

sources. All these effects bring about the deviations of the true optical channel from integrable

NLSE (1.4) such that the NF spectrum of the signal at the end of our transmission system can

be significantly distorted, which results in the appearance of errors in the transmitted data

[65, 66, 79]. Given that, the machine learning and artificial Neural network (NN) based signal

processing methods have recently attracted much attention, as they can effectively render

adaptive distortions-resilient signal processing tools, and, thus, using the NNs we can mitigate

the impact of detrimental factors mentioned above [81, 82].

Finally, we note that, recently, the interest in using the NFT as a signal-processing tool has risen

in fields that are not directly relevant to optical transmission. In particular, the NFT was applied

in the so-called integrable turbulence to monitor the appearance of coherent structures, such

as breathers, solitons, and rogue waves [83, 84], to the optical microresonators regime analysis

[85], to the optical frequency combs characterisation [86], and to the analysis of laser regimes

and the emergence of dissipative coherent nonlinear structures [87–89]. The analysis of NFT

modes’ evolution for such systems often appears to be more informative and convenient than

dealing with the conventional Fourier modes. The NFT is also an important tool for the design

of fibre Bragg gratings [90, 91]. Thus, we believe that the technique presented in this work

can have a much wider range of applications than simply being a processing tool in optical

communications. To end up, solving nonlinear differential equations itself by using NNs is a

fast-growing area with a range of applications in science and engineering [92–94]. We hope

that our work will also advance knowledge in this emerging field.

Periodical Nonlinear Fourier Transform

While this thesis primarily focuses on Nonlinear Fourier Transform techniques with vanishing

boundary conditions and the methods developed for this particular case, it is imperative to

acknowledge the existence of another significant branch of research in the field of NFT, known

as Periodic Nonlinear Fourier Transform (PNFT). The PNFT approach marks a significant ad-

vancement in the study and application of NFT techniques, specifically designed for periodic

or quasi-periodic boundary conditions. This approach not only extends the utility of NFT

methods to a broader range of signal types but also addresses several limitations associated

E.Sedov, PhD Thesis, Aston University 2023 15



1.2 Nonlinear Fourier Transform

with conventional NFT methods by offering enhanced control over signal’s duration and

bandwidth, reducing the processing window at the receiver, and mitigating noise impact [95].

PNFT-based transmission systems have been thoroughly investigated using the algebro-

geometric approach, which, despite its computational intensity due to the reliance on the

Riemann theta function, has paved the way for innovative solutions in optical communications

[96, 97]. To circumvent the computational challenges, the Riemann-Hilbert Problem (RHP)

approach has been proposed as a more practical alternative. This method benefits from linear

computational complexity proportional to the number of signal samples, facilitating efficient

parallelization and computation [98].

The finite-gap theory emerges as a complementary technique within the PNFT framework,

offering a rich mathematical foundation for the analysis of continuous (non-decaying) signals.

This theory, rooted in the Inverse Scattering Transform (IST) method and the Gelfand-Levitan-

Marchenko integral equations, provides a profound understanding of the spectral properties

of integrable systems [99]. An alternative perspective on the inverse problem is offered

through the formulation of a factorization problem of the Riemann-Hilbert (RH) type, further

simplifying the integration of spatial and temporal variables into the analysis [100].

The theory of finite-genus solutions to the NLSE has seen extensive application in the analysis

of water (ocean) waves [101, 102]. The finite-gap integration methodology has introduced

groundbreaking implications for problems on a finite spatial interval with periodic boundary

conditions, enabling the generation of exact solutions known as finite-gap solutions. These

solutions are explicitly given in terms of associated theta functions, derived from solving

a Jacobi inversion problem on a finite-genus Riemann surface, albeit their computational

accessibility remains a challenge [103–105].

In optical communications, the application of finite-gap theory and PNFT has been instru-

mental in the development of innovative methods based on non-decaying solutions to the

NLSE. These methods have demonstrated significant potential in enhancing the efficiency

of optical telecommunication systems, leveraging the robustness of finite-gap solutions to

address challenges inherent in soliton-based communications [95, 96, 98, 106, 107]. The

numerical solution of RH problems plays a crucial role in the modulation and digital signal

processing (DSP) methods proposed for PNFT-based transmission, where the inverse problem

is solved by constructing a signal in the physical domain from spectral parameters [98, 106].

Thus, while our thesis concentrates on NFT methods for vanishing boundary conditions,

the exploration of PNFT and finite-gap theory underscores a broader perspective in the field.

These approaches not only enrich our understanding of NFT and its applications but also open

new avenues for research and development in optical telecommunication systems, promising

more robust, efficient, and adaptable communication technologies for the future.
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q(t, z = 0)

Direct NFT

Evolution of NF spectrum with z

Scattering data
Σ(0)

q(t, z = L)

Inverse NFT

Scattering data
Σ(L)

Signal evolution in (t, z) space

Figure 1.2: Schematic representation of Nonlinear Fourier Transform.

1.2.2 Theory

NFT for Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation (1.4) (so does Manakov Equation (1.6)) belongs to the

class of the so-called integrable nonlinear partial differential equation (PDE)s that can be

integrated by the Inverse Scattering Transform (IST) method, also known as the Nonlinear

Fourier Transform (NFT) [53, 108]. The NFT allows one to find the evolution (with z) of the

signal q(t , z) described by the NLSE channel by solving two linear problems instead of solving

the nonlinear partial differential equation (PDE). A complex signal evolution governed by

NLSE is replaced by 3 steps (see Fig. 1.2):

1. direct transform from q(t , z = 0) to the so-called scattering data Σ(0) (nonlinear spec-

trum and spectral data of the initial signal)

2. trivial evolution of the scattering data with z, and

3. inverse transform to restore signal q(t , z) at any desired propagation distance z.

The NFT method is similar to standard Fourier approach for the solution of linear evolution

equations: present initial field in the spectral domain, consider trivial evolution of each

spectral harmonic, reconstruct evolved signal from the spectral components known for any

propagation distance.

We will now focus on the NLSE (1.4) presented as:

i
∂q

∂z
+ σ

2

∂2q

∂t 2 +|q|2q = 0, (1.9)

where q(t , z) represents the complex envelope of the optical field that decays rapidly as t

approaches infinity. The variable z stands for the length of the optical fiber, and t is the time

variable. The parameter σ takes a value of −1 for normal dispersion and 1 for anomalous

dispersion [46]. This equation, set in a frame moving with the pulse, describes how light pulses

q(t , z) travel through fiber optics. The initial conditions (Cauchy problem) for the pulse are
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1.2 Nonlinear Fourier Transform

set at a starting point z = z0 and given by:

q(t , z)|z=z0 = q0(t ). (1.10)

The mathematical approach developed by Zakharov and Shabat [53] integrates the NLSE.

This technique, known as the Nonlinear Fourier Transform, converts the optical signal into a

Nonlinear Fourier (NF) spectrum. This spectrum is derived from the solutions to the Zakharov-

Shabat problem (ZSP).

Equation (1.9) can be written as a condition of compatibility:

∂L

∂z
= ML−LM , (1.11)

which are written as

LΨ= ξΨ,
∂Ψ

∂z
= MΨ, (1.12)

whereΨ(t ) is a complex, two-component function that depends on the real variable t , and

L = i

(︄
∂t −q

−σq∗ −∂t

)︄
, M = i

(︄
σ∂2

t + 1
2 |q |2 −σq∂t − 1

2σqt

−q∗∂t − 1
2 qt −σ∂2

t − 1
2 |q|2

)︄
. (1.13)

The first equation in Eq. (1.12) is the eigenvalue problem for the operator L. When σ=−1,

the operator L is Hermitian, meaning it equals its own complex conjugate transpose (L = L† =
(L∗)T ), so the spectral parameter ξ= ζ+ iη is a real number ξ= ζ ∈R. If σ= 1, there is no such

constraint, and we find both continuous and discrete parts to the spectrum. The continuous

part is on the real axis, while the discrete part is found where the imaginary part of ξ is greater

than zero (Im(ξ) > 0).

The first equation in Eq. (1.12) can also be expressed as an evolutionary system:

dΨ(t )

d t
=Q(t )Ψ(t ), (1.14)

where q = q(t , z) is the signal at any point z along the fiber, which we’ll often not mention to

simplify our equations. The vectorΨ(t ) and the matrix Q(t ) are defined as

Ψ(t ) =
(︄
ψ1(t )

ψ2(t )

)︄
, Q(t ) =

(︄
−iξ q

−σq∗ iξ

)︄
.

Some sources call this the Zakharov-Shabat spectral problem (ZSSP). When we look at the

ZSSP for the signal at the start of the fiber, q(t , z = 0), the problem is laid out as:{︄−∂tψ1 +q0(t )ψ2 = iξψ1,

∂tψ2 +σq∗
0 (t )ψ1 = iξψ2.

(1.15)
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1.2 Nonlinear Fourier Transform

In these equations, q0(t ) is our initial signal, and ξ is a complex parameter that we use to solve

the system.

The system described by Eq. (1.14) can also be expressed in a gradient form:(︄
ψ1

ψ2

)︄
t

= J

(︄
∂H
∂ψ∗

1
∂H
∂ψ∗

2

)︄
= J

(︄
−iξ σq

−σq∗ iξ

)︄
, (1.16)

where H represents the energy of the system and is given by H = |ψ1|2 +σ|ψ2|2. When the

spectral parameter ξ is a real number, the matrix J becomes skew-Hermitian (which means

J =−J∗), and this applies for both values of σ=±1. Therefore, the equation in (1.16) keeps

the value of H constant over time.

We can express the energy H and the matrix Q using special matrices called Pauli matrices,

denoted as σ0 and σ3:

H =
⎧⎨⎩(Ψ∗,σ0Ψ), for σ= 1,

(Ψ∗,σ3Ψ), for σ=−1,
(1.17)

Q =
⎧⎨⎩Jσ0, for σ= 1,

Jσ3, for σ=−1,
, (1.18)

where the curved brackets (·, ·) represent the scalar product of complex vectors.

When the signal q(t ) decays rapidly as t goes to infinity, we can find specific solutions, known

as Jost functions, for the ZSP shown in Eq. (1.12). These solutions are:

Ψ=
(︄
ψ1

ψ2

)︄
=

(︄
e−iξt

0

)︄
[1+o(1)], t →−∞, (1.19)

for the left boundary, and

Φ=
(︄
φ1

φ2

)︄
=

(︄
0

e iξt

)︄
[1+o(1)], t →∞, (1.20)

for the right boundary. If we use the left boundary condition in Eq. (1.19), we can say that

H = 1 for any real spectral parameter. From here, we can find the Jost scattering coefficients

a(ξ) and b(ξ):

a(ξ) = lim
t→−∞ψ1(t ,ξ)e iξt , b(ξ) = lim

t→−∞ψ2(t ,ξ)e−iξt . (1.21)

These coefficients always meet the following condition:

|a(ξ)|2 +σ|b(ξ)|2 ≡ 1. (1.22)

The spectral data of the ZSP is given by a(ξ) and b(ξ) and can be described as:
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1.2 Nonlinear Fourier Transform

1. The zeros of a(ξ) = 0 give us the discrete spectrum {ξk },k = 0,K − 1, with the phase

coefficients defined by

rk = b(ξ)

a′(ξ)

⃓⃓⃓⃓
⃓
ξ=ξk

, where a′(ξ) = d a(ξ)

dξ
. (1.23)

2. The continuous spectrum is defined by reflection coefficient

r (ξ) = b(ξ)/a(ξ),ξ ∈R. (1.24)

We use the "left" boundary condition Eq. (1.19) to find these spectral data. Both the left and

right conditions Eqs. (1.19) and (1.20) are useful for figuring out the coefficient b(ξk ) for the

discrete part of the spectrum:

Ψ(t ,ξk ) =Φ(t ,ξk )b(ξk ). (1.25)

The trace formula is given as [108]:

Cn =− 1

π

∫︂ ∞

−∞
(2iξ)n ln |a(ξ)|2dξ+

K−1∑︂
k=0

1

n +1

[︁
(2iξ∗k )n+1 − (2iξk )n+1]︁ , (1.26)

This formula links the NLSE integrals Cn with the scattering coefficient a(ξ) and the set of

discrete spectral values ξk . The integrals Cn are represented as:

C0 =
∫︂ ∞

−∞
|q|2d t , C1 =

∫︂ ∞

−∞
qq∗

t d t , C2 =
∫︂ ∞

−∞
(qq∗

t t +|q |4)d t ,

C3 =
∫︂ ∞

−∞
(qq∗

t t t +4|q|2qq∗
t +|q|2q∗qt )d t .

Specifically, Eq. (1.26) for n = 0 yields:

C0 =− 1

π

∫︂ ∞

−∞
ln |a(ξ)|2dξ+

K−1∑︂
k=0

2i (ξ∗k −ξk ), (1.27)

This result is known as the Parseval equality for NLSE and it helps confirm the accuracy

of numerical solutions by checking the balance between continuous and discrete spectral

energies. The first term on the right in Eq. (1.27) is the energy from the continuous spectrum:

Ec =− 1

π

∫︂ ∞

−∞
ln |a(ξ)|2dξ, (1.28)

while the energy from the discrete spectrum is:

Ed =
K−1∑︂
k=0

2i (ξ∗k −ξk ). (1.29)
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1.2 Nonlinear Fourier Transform

The way scattering data changes with the distance z is described by:

r (ξ, z) = r (ξ, z0)e−2iξ2(z−z0), rk (z) = rk (z0)e−2iξ2
n (z−z0). (1.30)

The scattering data combines into the core Σ(z), which is a sum of the discrete and continuous

parts of the nonlinear spectrum:

Σdi s(z, t ) =
K−1∑︂
k=0

rk (z)e−iζn t , (1.31)

for the discrete part, and

Σcon(z) = 1

2π

∫︂ +∞

−∞
dξr (ξ, z)e−iξt , (1.32)

for the continuous part. Here N represents the total number of discrete eigenvalues in the

signal.

The last part of working with the NFT involves reconstructing the signal from the scattering

data. To get the signal q(t , z) back at a certain distance z, we use the core Σ(z, t ) in two integral

equations, known as the Gelfand-Levitan-Marchenko (GLM) equations:

Θ∗
1 (t , s)+

∫︂ t

−s
Σ(s +τ)Θ2(t ,τ)dτ= 0, (1.33)

−Θ∗
2 (t , s)+

∫︂ t

−s
Σ(s +τ)Θ1(t ,τ)dτ+Σ(t + s) = 0, (1.34)

where −t ≤ s < t and 0 ≤ t ≤ T , with Σ(t) ≡ Σ(z, t). We solve for two functions, Θ1 and Θ2,

using these equations. Once we find these functions, we can recover the signal using the

straightforward formula:

q(t )|z =−2Θ∗
2 (t , t ), (1.35)

at the desired spatial point z.1.

NFT for Manakov Equation

In the same way we can define Nonlinear Fourier Transform for Manakov Equation (1.6):

i
∂qx

∂ζ
+ σ

2

∂2qx

∂τ2 + (︁|qx |2 +|qy |2
)︁

qx = 0,

i
∂qy

∂ζ
+ σ

2

∂2qy

∂τ2 + (︁|qx |2 +|qy |2
)︁

qy = 0. (1.36)

1We suppress the dependence on z for simplicity: Σ(t) ≡ Σ(z, t), but actually, Θ∗
2 (t , s) also depends on z —

denoted asΘ∗
2 (z, t , s).
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1.2 Nonlinear Fourier Transform

The Lax operators of the Manakov Equation are given by

LM = i

⎛⎜⎝ ∂t −q1 −q2

−σq∗
1 −∂t 0

−σq∗
2 0 ∂t

⎞⎟⎠ , (1.37)

MM = i

⎛⎜⎝σ∂
2
t + 1

2 (|q1|2 −|q2|2) −σq1∂t − 1
2σq1t −σq2∂t − 1

2σq2t

−q∗
1 ∂t − 1

2 q∗
1t

−σ∂2
t − 1

2 (|q1|2 −|q2|2) 0

−q∗
2 ∂t − 1

2 q∗
2t

0 −σ∂2
t − 1

2 (|q1|2 −|q2|2)

⎞⎟⎠ . (1.38)

Eigenvalues are found by solving the eigenproblem

LΨ= ξΨ, (1.39)

Zakharov-Shabat system can be written for the Manakov’s equations in the following way

(Manakov-Zakharov-Shabat (MZS) problem):⎧⎪⎪⎨⎪⎪⎩
−∂tψ1 +q1(t )ψ2 +q2(t )ψ3 = iξψ1,

∂tψ2 +σq∗
1 (t )ψ1 = iξψ2.

∂tψ3 +σq∗
2 (t )ψ1 = iξψ3.

(1.40)

By the analoge for NLSE ZS problem, the basis vectors for the eigenspace (the space of all

eigenfunctions of L) for ME are given by

Φ(t ) →

⎡⎢⎣ 0 0

1 0

0 1

⎤⎥⎦exp( jξt ) and Φ̄(t ) →

⎡⎢⎣ 1

0

0

⎤⎥⎦exp(− jξt ) for t →∞.

The same can be done for the boundary t →−∞ and this leads to the eigenfunctions

Ψ(t ) →

⎡⎢⎣ 1

0

0

⎤⎥⎦exp(− jξt ) for t →−∞,

Ψ̄(t ) →

⎡⎢⎣ 0 0

1 0

0 1

⎤⎥⎦exp( jξt ) for t →−∞.

We can select either the set of eigenfunctions at the boundary t →∞, which areΦ and Φ̄, or

the set at the boundary t →−∞, which areΨ and Ψ̄, to serve as the independent basis for the

eigenvalue problem. Then, we can represent the other set using this chosen basis. We choose
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1.2 Nonlinear Fourier Transform

the eigenfunctionsΦ,Φ̄ as the basis:

Ψ= Φ̄a(ξ)+Φb(ξ),

Ψ̄=Φā(ξ)+ Φ̄b̄(ξ),
(1.41)

with dimensions a ∈ C, ā ∈ C2×2,b ∈ C2×1 and b̄ ∈ C1×2. Just one pair of these coefficients,

either a and b or ā and b̄, is sufficient to fully describe the signal. These coefficients, a(ξ) and

b(ξ), known as the Nonlinear Fourier coefficients, depend on the spectral parameter ξ and the

initial position z0, but they are independent of the time variable t . This allows us to select the

basis vectors at any time point we choose for calculating the Nonlinear Fourier coefficients.

Let’s select the time as it goes to infinity, t →∞. We already know the values for Φ and Φ̄ at

this time from the boundary conditions:

lim
t→∞Ψ= lim

t→∞
(︁
Φ̄a(ξ)+Φb(ξ)

)︁
=

⎡⎢⎣ a(ξ)

0

0

⎤⎥⎦exp(− jξt )+

⎡⎢⎣ 0 0

1 0

0 1

⎤⎥⎦[︄
b1(ξ)

b2(ξ)

]︄
exp( jξt ) =

⎡⎢⎣ a(ξ)exp(− jξt )

b1(ξ)exp( jξt )

b2(ξ)exp( jξt )

⎤⎥⎦
We can determineΨ as time approaches infinity (t →∞) using the boundary condition set

as time approaches negative infinity (t →−∞). Consequently, all eigenvectors mentioned

in (1.41) are known at the same point in time, specifically when t approaches infinity. To

calculate the Nonlinear Fourier Transform coefficients, we multiply both sides of the equation

by either exp( jξt ) or exp(− jξt ), depending on whether we are finding the a coefficients or b1,2

coefficients, respectively. Then, we pick out the appropriate component from the resulting

expressions:

lim
t→∞Ψexp( jξt ) =

⎡⎢⎣ a(ξ)exp(− jξt )

b1(ξ)exp( jξt )

b2(ξ)exp( jξt )

⎤⎥⎦exp( jξt ) =

⎡⎢⎣ a(ξ)

b1(ξ)(exp( jξt ))2

b2(ξ)(exp( jξt ))2

⎤⎥⎦
and

lim
t→∞Ψexp(− jξt ) =

⎡⎢⎣ a(ξ)exp(− jξt )

b1(ξ)exp( jξt )

b2(ξ)exp( jξt )

⎤⎥⎦exp(− jξt ) =

⎡⎢⎣ a(ξ)(exp(− jξt ))2

b1(ξ)

b2(ξ)

⎤⎥⎦
The NFT coefficients are thus given by

a(ξ) = lim
t→∞ψ1 exp( jξt ), bi (ξ) = lim

t→∞ψi+1 exp(− jξt )

And we can define the same spectral data:

• The zeros of a(ξ) = 0 give us the discrete spectrum {ξk },k = 0,K − 1, with the phase
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coefficients defined by

rk,i =
bi (ξ)

a′(ξ)

⃓⃓⃓⃓
⃓
ξ=ξk

, where a′(ξ) = d a(ξ)

dξ
. (1.42)

• The continuous spectrum is defined by reflection coefficient

ri (ξ) = bi (ξ)/a(ξ),ξ ∈R. (1.43)

Finding the NFT coefficients comes down to solving the MZS system (1.40). This is a scattering

problem: in solving (1.40), we analyze how the eigenfunctions are scattered from t →−∞
to t →∞. The NFT coefficients are therefore sometimes called the scattering coefficients.

They capture the scattering data of q (z0, t ) and can also be collected in the socalled scattering

matrix S(z,ξ). We can express (1.41) in terms of the scattering matrix as

[︂
Ψ Ψ̄

]︂
=

[︂
Φ̄ Φ

]︂[︄
a b̄

b ā

]︄
⏞ ⏟⏟ ⏞

S(x,ξ)

The inverse problem consists of recovering the potentials q = {q1(t ), q2(t )} ∈C1×2, where the

time t ∈R, ξ= ζ+ iη ∈C+, by left spectral data:{︁
r(ξ), [ξk ,rk ]K−1

k=0

}︁
. (1.44)

Here K is the number of the solitons in the signal. The inverse problem is reduced to solving

the left system of integral equations

Θ∗
1 (t , s)+

∫︂ t

−∞
Θ2

(︁
t , t ′

)︁
Σ

(︁
t ′+ s

)︁
d t ′ = 0, t ≥ s

∓Θ∗
2 (t , s)+Σ(t + s)+

∫︂ t

−∞
Θ1

(︁
t , t ′

)︁
Σ

(︁
t ′+ s

)︁
d t ′ = 0

(1.45)

where 2-dimensional kernels are defined for all real t by

Σ(z) = 1

2π

∫︂ ∞

−∞
r(ξ)e−iξt dξ− i

K−1∑︂
k=0

rk e−iξk t . (1.46)

After solving the system (1.45), the potential q(t , z) is restored by the formulas

q(t , z) =−2Θ∗
2 (t , t )
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1.2 Nonlinear Fourier Transform

For most cases in this work we will use NFT for NLSE.

1.2.3 Solitons

The history of solitons begins in fact in 1834, when James Scott Russell observed a solitary

shaft of water in a channel, moving without a noticeable change in shape or decrease in speed

over several kilometers [109]. Such waves were called solitary, and later, in 1965, the term

soliton was introduced to represent their particle-like essence [110]. However, even earlier,

in 1831, M. Faraday [111] described an effect in which a fine powder placed on an oscillating

surface gathered in small "heaps" , which could be both stationary and moving. The properties

of solitons were studied in the 1960s, when the inverse scattering method was introduced, in

which solitons arose as separate solutions [51].

In the 20th century, autosolitons (dissipative solitons) were actively studied in physical, chem-

ical, and biological systems. The main work on this topic is related to the reaction-diffusion

model [112, 113], which describes the localized structures that arise in the chemical reactions

of activators, or in current flows in plasma, gas and semiconductors.

In nonlinear optics, solitons are divided into temporal and spatial. The temporal solitons are

localized in time and related to optical pulses that retain their shape, and the spatial ones are

self-directed beams, limited in transverse directions, orthogonal to the propagation vector.

The formation and existence of such types of solitons is caused by the optical Kerr effect

[114–116] — a nonlinear change in the refractive index of the medium, depending on the light

intensity and leading to spatial focusing (or defocusing) and temporal self-modulation phase.

Optical solitons are divided into two large classes: conservative and dissipative. Conserva-

tive solitons are created due to the balance of nonlinear focusing and linear spreading in

transparent media in which there is no energy pumping, and the radiation loss is negligible.

Dissipative solitons (autosolitons) are localized as a result of the balance of the inflow and

outflow of energy in the system. For them, there may also be an effect of balancing linear

spreading and nonlinear focusing.

These two classes of solitons have both common properties and fundamental differences,

as a result of their common nature, but of a different method of formation. The set of basic

parameters of dissipative solitons is discrete due to the requirement for the energy balance.

This leads to their increased stability, and, as a result, dissipative solitons have prospects in

various practical applications. Conservative solitons are determined by a continuously varying

parameter, for example, intensity or width. Depending on the method of energy input into

the optical system, the solitons are divided into coherent and incoherent. Coherent solitons

are formed in a beam of continuous coherent radiation, which determines the frequency and

phase. The incoherent signal forms incoherent solitons, for which the common radiation

phase is arbitrary.

Due to the presence of noise in real systems, the possibility of spontaneous transition between
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soliton and soliton-free structures is realized. The soliton itself, although not a stable structure,

can exist for a long time, since it is resistant to small perturbations. Transitions can be caused

by large fluctuations that are unlikely in real systems. This fact leads to one interesting feature

described in [117], when in the process of signal evolution in the system solitons arise.

The study of optical solitons began in the 60s of the 20th century, when the first optical

nonlinear systems appeared, and experiments in this field became available. The first example

was the article [118] about the possibility of the existence of a spatial conservative soliton in a

transparent medium with a self-focusing nonlinearity. Later, a time soliton was discovered in

single-mode fibers with the Kerr nonlinearity [6].

1.2.4 Analytical solutions

Satsuma-Yajima signal

As the first analytical signal for which the nonlinear spectrum is known, we take the following:

q(t ,0) = A sech(t ), (1.47)

hyperbolic profile with variable amplitude A. We assume that A > 0 is real, because otherwise

the phase factor only affects the phase of the solution q(t , z), which in this context does not

interest us. In 1974, Satsuma and Yajima showed that the signal (1.47) is a particular solution

of the Zakharov-Shabat problem (ZSP) (1.15), and its nonlinear spectrum was found.

They found that the function written as follows:

ψ1(t ;ξ) =
(︄

y (1)
1 (s;ξ)

−A(ξ− 1
2 i )−1 y (2)

1 (s;−ξ)

)︄
, (1.48)

is the Jost function of the problem (1.15), where the functions y (1,2)
1 are defined by:

y (1)
1 (s;ξ) = siξ/2(1− s)−iξ/2F

(︃
−A, A, iξ+ 1

2
; s

)︃
(1.49)

y (2)
1 (s;ξ) = s1/2−iξ/2(1− s)−iξ/2F

(︃
1

2
− iξ+ A,

1

2
− iξ− A,

3

2
− iξ; s

)︃
(1.50)

in which F (α,β,γ; s) is a hypergeometric function, s ≡ 1−tanh(x)
2 . Taking into account the

properties of the hypergeometric function:

F (α,β,γ;0) = 1
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F (α,β,γ; s) = Γ(γ)Γ(γ−α−β)

Γ(γ−α)Γ(γ−β)
F (α,β,α+β+1−γ;1− s)+

+Γ(γ)Γ(α+β−γ)

Γ(α)Γ(β)
(1− s)γ−α−βF (γ−α,γ−β,1+γ−α−β;1− s)

it is easy to calculate the asymptotic behavior of the function ψ1(t ;ξ):

ψ1(t ;ξ) →
(︄

1

0

)︄
e−iξt , t →∞ (1.51)

ψ1(t ;ξ) →
⎛⎝ Γ2(iξ+ 1

2 )

Γ(iξ+ 1
2+A)Γ(iξ+ 1

2−A)
e−iξt

−i sin(πA)sech(πξ)e iξt

⎞⎠ , t →−∞ (1.52)

The function
Γ2(iξ+ 1

2 )

Γ(iξ+ 1
2+A)Γ(iξ+ 1

2−A)
in front of e−iξt in the last expression is nothing more than

the coefficient a(ξ) whose zeros give us a discrete spectrum for problem (1.15):

ξn = i

(︃
A+ 1

2
−n

)︃
, (1.53)

where n is a positive integer satisfying the condition n < A+ 1
2 . The first eigenvalue appears

at A = 1
2 , the second at A = 3

2 and so on. Thus, for an arbitrary A > 0, the number of discrete

eigenvalues is equal to the largest integer number n satisfying the condition n − 1
2 < A.

Rectangular pulse

Another example of the initial distribution is a rectangular pulse with varying amplitude:

q(t ,0) =
{︄

A, 0 ≤ t ≤ 1,

0, otherwise.
(1.54)

Similarly, with the previous type of signal, we assume that A > 0 and real. The coefficient a(ξ)

takes the form:

a(ξ) = e iξ

(︄
cos

√︂
ξ2 + A2 − iξ√︁

ξ2 + A2
sin

√︂
ξ2 + A2

)︄
. (1.55)

This expression is zero if the expression in parentheses is zero, which leads us to the transcen-

dental equation:

cot
√︂
ξ2 + A2 = iξ√︁

ξ2 + A2
(1.56)

This expression can be satisfied only for imaginary ξ. Each subsequent eigenvalue appears

when A = (n − 1
2 )π, where n is a positive integer. This formula can be rewritten as

N = int[1/2+L1(q)/π], (1.57)
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1.2 Nonlinear Fourier Transform

where int[...] means the integer part of the expression in brackets, and N is the number of

solitons. The first level L1 of the norm calculated by this formula is 1.57, the second is 4.71

and so on.

1.2.5 NF spectrum associated with finite-extent signals

In practical applications, we do not typically deal with the signals defined on the whole infinite

t-axis, but rather operate with the truncated wave-forms, meaning that q(t) is non-zero

only inside the finite interval of t . In this case, the NF spectrum of the signal is completely

characterised by the coefficient b(ξ) from (1.21), which becomes band-limited, appended

with the finite discrete set of solitonic parameters {ξn ,rn} [70, 71]. When, in addition, the

discrete NF spectrum is absent, as it is in the case considered, the whole NF spectrum can be

defined using just b(ξ) profile[69], while the coefficient a(ξ) can be expressed through b(ξ) in

the following way:

a(ξ) =
√︂

1−|b(ξ)|2 exp

⎡⎣ i

2π

∞∫︂
−∞

ln
(︁
1−|b(s)|2)︁
ξ− s

d s

⎤⎦ , (1.58)

where the integral in the exponent is understood in the principal value sense. So, in practice,

instead of r (ξ) (1.24), it is sufficient to compute the b-coefficient, and then find a(ξ) using

Eq. (1.58). If needed, we then can use both computed quantities to find the reflection coeffi-

cient (1.24). We note that within the b-modulation concept, which has turned out to be the

most efficacious PNFT method developed so far, we utilise the b(ξ) functions as information

carriers[69–72].

1.2.6 NF spectrum for the weakly-nonlinear case

Let us assume that the amplitude of our signal is small, say |q(t )| ∼ ϵ, with ϵ≪ 1. Then, we can

derive the following expansions for the NF scattering coefficients [59]:

a(ξ) = 1−
∞∫︂

−∞
d t1

t1∫︂
−∞

d t2 e2iξ(t1−t2)q(t1)q̄(t2), (1.59)

up to ϵ2 (the next expansion term ∼ ϵ4), and

b(ξ) =−
∞∫︂

−∞
d t1 e−2iξt1 q̄(t1)+

t∫︂
−∞

d t1

t1∫︂
−∞

d t2

t2∫︂
0

d t3 e2iξ(t2−t1−t3)q̄(t1)q(t2)q̄(t3), (1.60)
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up to ϵ3 (the next expansion term ∼ ϵ5). With the accuracy up to ϵ4, we have for the reflection

coefficient:

r (ξ) =−
∞∫︂

−∞
d t1 e−2iξt1 q̄(t1)−

∞∫︂
−∞

d t1

∞∫︂
t1

d t2

t2∫︂
−∞

d t3 e2iξ(t2−t1−t3)q̄(t1)q(t2)q̄(t3). (1.61)

So we see that the first linear term in r (ξ) expansion is simply the conjugated FT of our signal

up to the frequency scaling factor. Then, r (ξ) from Eq. (1.61) differs from the expression for

b(ξ), Eq. (1.60), only by the terms ∼ ϵ3 and higher, but the structure of both expressions is the

same.

1.3 Modulation and Quality metrics

1.3.1 Modulation formats

In optical communication systems, a variety of modulation formats are employed to encode

information onto light waves for transmission. Among these, On-Off Keying (OOK) is a basic

form where the presence or absence of a light pulse represents binary one or zero, respectively.

Phase-Shift Keying (PSK) takes a step further by modulating the phase of the optical signal to

represent data, with common variants like Binary Phase-Shift Keying (BPSK) and Quadrature

Phase-Shift Keying (QPSK) representing one or two bits per symbol. Differential modulation,

such as Differential Phase-Shift Keying (DPSK) and Differential Quadrature Phase-Shift Keying

(DQPSK), modulates the phase information relative to the previous symbol, which can be

advantageous in certain channel conditions. Pulse Amplitude Modulation (PAM) modulates

the amplitude of the optical pulses to encode data.

Bitrate and baud rate are fundamental concepts in digital communication systems, serving

as measures of data transmission and symbol modulation rates respectively. The bitrate,

also known as bit rate or data rate, signifies the rate at which bits are transmitted over a

communication channel per unit time. It is quantified in bits per second (bps). The bitrate

provides insight into the communication system’s capacity to convey information over a

period. A higher bitrate denotes a higher data transmission rate, which often translates to

faster communication. The baud rate, on the other hand, represents the rate of symbol changes

or modulations on the communication channel per unit time. It is measured in symbols per

second or baud (Bd). In digital communications, a symbol could represent one or more bits

depending on the modulation scheme. For instance, in BPSK, one symbol corresponds to one

bit, but in Quadrature amplitude modulation (QAM), a symbol could represent multiple bits.

The relationship between bitrate and baud rate can be expressed using the following formula,

where M is the number of bits per symbol:

Bitrate = Baud Rate×M (1.62)
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In this work, our focus narrows down to Quadrature amplitude modulation, a sophisticated

modulation format that encodes data by modulating both the amplitude and phase of the

optical signal. QAM combines the principles of both amplitude and phase modulation, thereby

enabling the transmission of multiple bits per symbol. This feature significantly enhances

the spectral efficiency of the communication system. Commonly used QAM formats include

16-QAM, 64-QAM, and 256-QAM, named for the number of distinct symbols or states they

have, which are 16, 64, and 256 respectively. The main parameters of the systems, depending

on the constellation diagram, are presented in Table 1.1. Although the first three types of

Table 1.1: QAM formats, Bit rate and Baud rate comparison

Modulation type Bits per symbol Baud rate Bit rate
BPSK 1 1 × Bit rate 1 × Baud rate
QPSK 2 1/2 × Bit rate 2 × Baud rate
8PSK 3 1/3 × Bit rate 3 × Baud rate

16QAM 4 1/4 × Bit rate 4 × Baud rate
32QAM 5 1/5 × Bit rate 5 × Baud rate
64QAM 6 1/6 × Bit rate 6 × Baud rate

256QAM 8 1/8 × Bit rate 8 × Baud rate
1024QAM 10 1/10 × Bit rate 10 × Baud rate

modulation in the Table are called Phase-Shift Keying (PSK), they can be represented via QAM

modulation.

In QAM, data is represented by a constellation diagram, where each point on the constella-

tion corresponds to a unique symbol. The position of each point is determined by both its

amplitude and phase, allowing for the encoding of multiple bits per symbol. Examples of

constellation diagrams used in the work are presented in Fig. 1.3. For instance, in 16-QAM, the

constellation diagram consists of 16 distinct points arranged in a square grid, allowing for the

transmission of 4 bits per symbol. The decoding process in the receiver involves identifying

the closest constellation point to the received signal, from which the encoded bits are then

retrieved. The choice of QAM as a modulation format strikes a balance between the data

rate, spectral efficiency, and system robustness, making it a compelling choice for high-speed

optical communication systems.

1.3.2 Performance Metrics in Optical Communication Systems

In optical communication systems, evaluating the performance and reliability of data trans-

mission is crucial. Prominent metrics such as Bit Error Rate (BER), Error Vector Magnitude

(EVM), and Mutual information (MI) are employed for this purpose. Here’s an overview of

these metrics:
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a) b)

c) d)

Figure 1.3: Constellation diagrams for (a) QPSK, (b) 8-PSK, (c) 16-QAM and (d) 64-QAM.
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Bit Error Rate (BER)

Bit Error Rate (BER) is a pivotal metric that quantifies the number of bit errors (incorrectly

received bits) per unit time. It’s a direct indicator of the system’s error performance.

BER = Number of bit errors

Total number of bits transmitted
(1.63)

The measured (or estimated) BER is usually converted to an equivalent Gaussian noise Q-factor

in dB using the expression:

QBER = 20 · log10

(︂⎷
2erfc−1(2BER)

)︂
, (1.64)

where erfc−1 is the inverse complementary error function. This sets the reference Q-factor

used in the following evaluation of different indirect methods.

Error Vector Magnitude (EVM)

Error Vector Magnitude (EVM) serves as a measure of modulation quality and error perfor-

mance. It appose the ideal symbol points to the actual symbol points received, providing

insight into the distortion induced during transmission.

EVM =
⌜⃓⃓⎷∑︁(︁

Ideal symbol point−Received symbol point
)︁2∑︁(︁

Ideal symbol point
)︁2 (1.65)

In an optical communication system with QAM format, constellation points represented by

complex points. EVM is determined by the formula

EVMm = σerr

|Et ,m | , σ
2
err =

1

I

I∑︂
i=1

|Eerr,i |2, Eerr,i = Er,i −Et ,i . (1.66)

where the propagated vector Er deviates by the vector Eerr from the ideally transmitted vector

Et , and BER is connected with EVM as

BER ≈ (1−L−1)

log2 L
erfc

[︃√︄
3log2 L

(L2 −1)

1

(kEVMm)2 log2 M

]︃
. (1.67)

In the formula L is the number of signal levels that are identical in each dimension of the

constellation, log2 M is the number of bits encoded in each QAM symbol. More information

about these parameters can be found in [119].
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Mutual Information

MI assesses the amount of information shared between the transmitted and received signals.

It’s a measure of the system’s capacity to convey information reliably.

MI = ∑︂
x∈X

∑︂
y∈Y

p(x, y) log2

(︃
p(x, y)

p(x)p(y)

)︃
(1.68)

where p(x, y) is the joint probability distribution of the transmitted signal x and the received

signal y , and p(x) and p(y) are the marginal probability distributions of x and y respectively.

In our scenario, x and y can be construed as the transmitted and received symbols or bits,

respectively, and the probability distribution can be ascertained numerically.

These metrics collectively offer a comprehensive understanding of the system’s error perfor-

mance, modulation quality, and information transmission capacity, serving as vital tools for

system analysis and optimization.

1.4 Signal Formats

1.4.1 Wavelength Division Multiplexing

Wavelength Division Multiplexing (WDM) is a pivotal technology in optical communications,

enabling the simultaneous transmission of multiple signals along the same fiber-optic cable,

each at a unique wavelength. This effectively multiplies the capacity of the channel, making

efficient use of the available bandwidth.

The optical signal for WDM transmission is represented as a superposition of modulated

signals, each associated with a distinct wavelength or frequency. The expression for A(t) is

given by:

A(t ) =
√︁

P0

K∑︂
k=1

Nch∑︂
n=1

ckn f (t −kT )e−i 2π fn t , (1.69)

where Nch is the number of considered spectral channels, K – number of symbols in signal,

P0 is a average signal power per spectral channel, fn =
(︂
n − Nch+1

2

)︂
·∆, and ∆ is the channel

spacing; ck,n is the complex point from modulation constellation (symbol) of the kth symbol

on the nth channel, f (t −kT ) – pulse shape.

For a system with two polarizations, the optical signal is represented as two separate compo-

nents Ax (t ) and Ay (t ):

Ax (t ) =
√︃

P0

2

K∑︂
k=1

Nch∑︂
n=1

ckn,x f (t −kT )e−i 2π fn t ,

Ay (t ) =
√︃

P0

2

K∑︂
k=1

Nch∑︂
n=1

ckn,y f (t −kT )e−i 2π fn t , (1.70)
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where ckn,x and ckn,y are the complex constellation points of the kth symbol on the nth

channel for the x and y polarizations, respectively. In this work we always suppose that

number of symbols and number of WDM channels for each polarisation are the same.

At the receiver, the received signal Aout (t ) is demodulated to extract the transmitted symbols.

The demodulation process can be represented by the following expression:

bk =
∫︂ ∞

∞
d t Aout (t ) f ∗(t −kT ), (1.71)

where bk is the demodulated symbol, f ∗(t−kT ) is the complex conjugate of the pulse shape. In

the scenario involving two polarizations, Aout (t ) will be represented as Aout ,x (t ) and Aout ,y (t )

for each polarization, leading to the derivation of bk,x and bk,y respectively.

The matched filter is an essential component in digital communication systems, utilized at

the receiver to maximize the Signal-to-noise ratio (SNR) for a given received signal, thereby

facilitating optimal symbol detection. The impulse response of a matched filter is crafted to be

a time-reversed and conjugated version of the transmitted signal’s waveform. In mathematical

terms, if f (t) is the transmitted signal waveform, the impulse response h(t) of the matched

filter is given by h(t ) = f ∗(−t ), where ∗ denotes complex conjugation.

When the received signal traverses the matched filter, the output at the sampling instant

yields the optimal SNR, making it simpler to detect the transmitted symbols amidst noise.

The employment of a matched filter is particularly beneficial in environments laden with

significant noise and interference, as it markedly enhances the reliability of symbol detection.

In our case we have time symmetry and always f (t ) = f (−t ). So Eq. (1.71) represents matched

filter for WDM receiver.

Note that the integral in Eq. (1.71) represents the convolution of the output signal with the

function f ∗. A similar integral expression, albeit in discrete form, can be observed in Eqs. (1.69)

and (1.70). The summation
∑︁Nch

n=1 ckn f (t−kT ) serves as a discrete analog of the convolution op-

eration between the discrete points ckn and the function f (t ). This characteristic is leveraged

for practical implementation, aiding in efficient GPU acceleration for numerical simulations,

which will be elaborated upon in Chapter 5.

Carrier Pulse

The choice of carrier pulse shape is crucial as it greatly influences the system’s performance,

particularly regarding bandwidth efficiency and inter-symbol interference.

A common choice for the carrier pulse in WDM systems is the Gaussian pulse, valued for

its spectral efficiency and simplicity. The Gaussian pulse has a continuous waveform, with

its shape defined by the Gaussian function. Another alternative could be the RC or RRC

pulses, frequently chosen due to their ability to control bandwidth and minimize inter-symbol

interference.
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The choice between RRC and RC filters is driven by the specific requirements of a communica-

tion system. However, there are particular advantages associated with the RRC filter which

often make it a preferred choice over the RC filter. One of the advantages is the pulse shaping

and matched filtering. While the RC filter can be used for pulse shaping at the transmitter or

receiver, the RRC filter is designed to be used both at the transmitter and the receiver. When

an RRC filter is used at both ends, the combined response is a Raised Cosine filter, which

provides optimal ISI mitigation. This split of filtering responsibility between the transmitter

and receiver can simplify the design and implementation of the filtering process.

Without loss of generality in this thesis, we consider the following different return-to-zero (RZ)

carrier functions. First example is the function which has cosine slopes and flat central part:

f (t ) =

⎧⎪⎪⎨⎪⎪⎩
1

2

[︃
1−cos

(︃
4πt

T

)︃]︃
, 0 ≤ t ≤ T

4
or

3T

4
≤ t ≤ T

1,
T

4
< t < 3T

4

(1.72)

where T is symbol interval.

As a carrier function, one can also use other RZ functions, for example one period of cosine

function, which shifted to make overall function positive on the time interval.

f (t ) = 1

2

[︃
1−cos

(︃
2πt

T

)︃]︃
, 0 ≤ t ≤ T , (1.73)

As we mentioned above, one of the most common choice is RC waveform function. In time

space, it is expressed as follows:

f (t ) =

⎧⎪⎪⎨⎪⎪⎩
π

4T sinc
(︂

1
2β

)︂
, t =± T

2β ,

1
T sinc

(︁ t
T

)︁ cos
(︂
πβt

T

)︂
1−

(︂
2βt
T

)︂2 , otherwise.
(1.74)

And other is RRC with a roll-off factor β:

f (t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
T

(︁
1+β(︁ 4

π −1
)︁)︁

, t = 0,
β

T
⎷

2

(︂(︁
1+ 2

π

)︁
sin

(︂
π

4β

)︂
+ (︁

1− 2
π

)︁
cos

(︂
π

4β

)︂)︂
, t =± T

4β ,

1
T

sin
(︁
π t

T (1−β)
)︁+4β t

T cos
(︁
π t

T (1+β)
)︁

π t
T

(︂
1−(︁

4β t
T

)︁2
)︂ , otherwise.

(1.75)

All waveforms are represented in Fig. 1.4. For NFT analysis, we will focus on the study of

symbols with a carrier function in the form (1.72). And for WDM signal analysis we will use

RRC (1.72) (as we are interested in real systems).
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Figure 1.4: Examples of carrier functions for WDM signal. (a) function for Eq. (1.72), (b)
function for Eq. (1.73), (c) function for RC (Eq. (1.74)) and (d) for RRC (Eq. (1.74).

1.4.2 Orthogonal Frequency-Division Multiplexing

OFDM signal combines modulation and multiplexing. To form a symbol, the term "subcarrier"

is used, which in fact is one of the Fourier harmonics in the frequency space from which the

signal is formed. One isolated symbol on a time slot of T is the sum of independent subcarriers

modulated according to the chosen modulation type:

Asymb(t ) =
N−1∑︂
k=0

ck e i 2πk
T t , (1.76)

where N – number of subcarriers, T – symbol duration, ck – modulated data. Depending on

the modulation type, the corresponding constellation diagram is selected (Fig. 1.3).

In practice, the number of subcarriers is chosen as N = 2p (p is a positive integer) in order to

use the Fast Fourier Transform (FFT) algorithms. The input is serial data which is divided into

N parallel threads. Each data stream is encoded according to the selected modulation format

(QPSK or QAM). Each individual stream corresponds to a specific frequency, and the encoded

data determines the complex amplitude for that frequency. Thus obtained N numbers are

used further in the FFT, the result of which is the one OFDM symbol.

Orthogonal Frequency Division Multiplexing (OFDM) signal generation in a practical scenario

encompasses multiple symbols, a guard interval, and a cyclic prefix to mitigate Inter-Symbol
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Interference (ISI) and ensure seamless reception. When transmitting multiple OFDM symbols,

the signal A(t ) over multiple symbol intervals is represented as a sum over all symbols K and

all sub-carriers N as follows:

A(t ) =
K−1∑︂
k=0

N−1∑︂
n=0

ckn ·e i 2πk
T (t−kT ) (1.77)

whereK is the total number of OFDM symbols, T is the symbol duration.

A cyclic prefix is a portion of the OFDM symbol copied and prepended to the symbol to combat

ISI. If the cyclic prefix duration is TCP, the signal with the cyclic prefix ACP(t ) is given by:

ACP(t ) =
⎧⎨⎩A(t − (T +TCP)k +TCP), for kT ≤ t < kT +TCP

A(t −k(T +TCP)), for kT +TCP ≤ t < (k +1)T +kTCP

(1.78)

IFFT output IFFTGuard
interval

Tg TFFT

TS

Symbol k Symbol k+1Symbol k-1

Copy

Guard
interval

IFFT

Figure 1.5: Addition of a guard period to an OFDM signal

A guard interval is added between OFDM symbols to prevent inter-symbol interference. The

guard interval duration is typically equal to the cyclic prefix duration TCP. The resulting signal

Afinal(t) which includes multiple symbols, the cyclic prefix, and the guard interval is thus

represented by the formula for ACP(t ) over the entire transmission duration (Fig. 1.5). Within

the scope of this work, the cycle prefix will not be incorporated into the OFDM signals. Instead,

Eq. (1.77) or Eq. (1.76) will be used as references.

To decode a signal, the procedure is performed in the reverse order. The cyclic prefix appended

to each OFDM symbol is removed. Once the cyclic prefix is removed, the receiver performs a

FFT on each OFDM symbol to convert it from the time domain to the frequency domain. The

FFT operation segregates the aggregated OFDM symbol back into its constituent subcarriers.

This transformation is the reverse of what was done at the transmitter during the Inverse

Fast Fourier Transform (IFFT) operation. Following the FFT, each sub-carrier is individually

demodulated to extract the data bits. The demodulation is performed based on the modulation

scheme used at the transmitter, for example, QAM or PSK. The data from all sub-carriers is

then aggregated to form the complete data stream.
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2.1 Intro

The Nonlinear Fourier Transform (NFT) stands as a potent tool for the analysis and compre-

hension of nonlinear systems, especially those of a periodic or quasi-periodic nature [53, 108,

120]. In recent years, its application has extended across various domains, including nonlinear

and quantum optics [89, 121, 122]. A significant advantage of NFT lies in its capability to

compute signal propagation over extended distances through a three-step process [123]: di-

rect NFT, nonlinear spectrum evolution, and inverse NFT. This approach enables the precise

modeling of intricate interactions between chromatic dispersion and nonlinear phenomena,

such as the Kerr effect. Furthermore, NFT excels at handling signals with arbitrary boundary

conditions, rendering it an ideal choice for continuous signal processing.

In light of this, the interest in numerical techniques for solving direct and inverse problems

has grown [124–127]. Comprehensive reviews of existing methods are available in [4, 128, 129].

Notably, there exist fast methods for direct and inverse NFT calculations, characterized by

lower asymptotic complexity compared to conventional approaches. These are referred to as

the Fast Nonlinear Fourier Transform (FNFT) [130–136].

Concerning nonlinear interactions, NFT emerges as a essential tool for enhancing the per-

formance of optical communication systems and augmenting throughput [4, 120, 137–141].

Moreover, NFT yields a more precise depiction of the signal and its nonlinear distortions,

fostering the development of more efficient communication systems. This encompasses

improved modulation and detection schemes, along with advanced error correction tech-

niques [142–144].

Nonetheless, challenges persist in employing NFT for optical telecommunications. The com-

putational complexity of NFT algorithms can be substantial, especially for systems featuring

numerous channels or a broad spectrum of signal parameters. Additionally, implementing

NFT-based signal processing may necessitate specialized hardware or software, introducing

complexity and elevating system costs. Notwithstanding these challenges, the potential ad-
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vantages of NFT in optical telecommunications render it an enticing area of research, with

the potential to revolutionize the processing and transmission of optical signals within future

communication networks.

The process of partitioning a continuous signal into non-overlapping segments, commonly

referred to as the "sliding window" technique, serves as a fundamental method in signal

processing. This technique seeks to extract meaningful insights from a signal by independently

analyzing each segment or window. The application of NFT to continuous signals presents

a notable challenge, as merely segmenting the signal into non-overlapping portions using a

sliding window technique falls short of efficient processing.

The idea of the windowing method, as used in the study of hydrodynamic envelope soli-

tons [145–147], involves applying a temporal or spatial window to the data before performing

the Inverse Scattering Transform. This technique allows for the analysis of localized structures

within a larger dataset by focusing on specific sections where solitonic features are expected

or observed. It enhances the ability to detect and analyze solitons in complex systems by

isolating their contributions from the surrounding noise or other wave components, thereby

providing a clearer understanding of their dynamics and stability.

This part introduces a novel method for enhancing the accuracy and efficiency of continuous

signal processing with vanishing boundary conditions using NFT. This method aims to address

the challenges associated with traditional NFT algorithms and offers a promising solution for

signal processing across diverse fields. Through an in-depth exploration of the underlying

mathematical principles and numerical simulations, we demonstrate the effectiveness of this

new approach across various scenarios.

We propose an enhanced method that combines Chromatic dispersion compensation (CDC)

with the sliding window technique for continuous signal processing within optical communica-

tion systems. By pre-compensating chromatic dispersion, we mitigate overlap and distortion

among adjacent characters, ultimately improving the performance and applicability of NFT.

This approach bears similarities to reducing nonlinearity using neural networks [148–152].

Our method enhances both accuracy and efficiency while resolving issues associated with

continuous signal processing, resulting in heightened system performance and increased

throughput, particularly in optical telecommunications.

2.2 Sliding window processing

2.2.1 Conventional window

Let’s consider a continuous signal, denoted as A(z = L, t) := A(t), which we intend to pro-

cess using the NFT with vanishing boundary conditions. To clarify, the notation for A in

equation (1.3) remains consistent throughout. However, in the case of the Manakov Equa-

tion, A represents the vector [Ax , Ay ], and all operations are independently applied to each
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component.

To achieve accurate processing, it is crucial to account for dispersion that occurs during signal

propagation. Dispersion leads to neighboring symbols overlapping and distorting, potentially

compromising the accuracy of subsequent signal processing steps.

To address this challenge, we introduce side dispersion intervals, denoted as Td , on both the

left and right sides of a designated processing interval, referred to as Tpr oc (see Fig. 2.1). This

approach ensures that the processing interval effectively captures the nonlinear distortions in

the signal while allowing the signal to be influenced only by the effects of the side dispersion

intervals, rather than other parts of the signal beyond the designated interval.

The length of the dispersion interval, Td , depends on the propagation distance and can be

approximated by:

Td =β2 ×Ω×L, (2.1)

where β2 is the group velocity dispersion parameter of the fiber, L is the propagation distance,

Ω is the signal bandwidth.

To cut the signal we define the window function W (t) as a combination of Heaviside step

functions that selects the time interval for processing:

W (t , tw ) =
⎧⎨⎩1, tw −Td ≤ t ≤ tw +Tpr oc +Td ,

0, otherwise,
(2.2)

where tw corresponds to the time parameter associated with the current position of the

processing window.

Then, we take a signal Aw (t ) inside this Td +Tpr oc +Td window defined by

Aw (t , tw ) = A(t )W (t , tw ) (2.3)

Tproc
Td TdTdTd

Figure 2.1: Schematic illustration depicting how dispersion intervals from different parts of
the signal interact with each other.
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and use NFT. It will restore the initial transmitted signal Aw (z = 0, t , tw ), but side intervals Td

will be corrupted due to the fact that we windowed the signal and lost information about the

previous and following intervals. So we cut again and take only the Tpr oc interval:

Wpr oc (t , tw ) =
⎧⎨⎩1, tw ≤ t ≤ tw +Tpr oc ,

0, otherwise.
(2.4)

It will have all the necessary information about nonlinear distortions and other effects from

the side intervals Td . It exclusively considers these effects and disregards any influence from

previous or subsequent intervals.

The resulting solution can be expressed by the following equation:

Aw (z = 0, t , tw ) =Wpr oc (t , tw ) ·NFT[Aw (z = L, t , tw )]. (2.5)

In this equation, Aw represents the value at the output of the processing window. It’s calculated

as the product of the processing window function, Wpr oc (t , tw ), and the nonlinear Fourier

transform of the input signal, which is the product of A(z = L, t) and the window function

W (t , tw ) at the fiber’s end, located at z = L. We can iterate this procedure by incrementing tw

with the value of the processing interval Tpr oc . This allows us to repeat the process for the

next position of the processing window.

While this method can be effective in certain scenarios, its numerical accuracy may not always

be optimal. To enhance the precision of the calculation methods, it might be necessary to

insert zero intervals on both sides of the processing signal. Furthermore, dealing with a signal

of high average power can result in a significant number of soliton components, making the

computational analysis challenging. Particularly, the computation of nonlinear spectrum

phases for solitons can be highly unstable, and as the power of the solitons increases, the

numerical calculations may become less reliable.

To address these challenges and enhance the stability of numerical calculations, we propose a

more advanced method, which will be described in the subsequent section.

2.2.2 Compensated window

As previously discussed, the dispersion occurring during signal propagation leads to the

overlapping and distortion of neighboring symbols. This can significantly compromise the

accuracy of subsequent signal processing. However, we can mitigate this issue by leveraging

our understanding of the propagation model, such as the Nonlinear Schrödinger Equation

for single polarization or the Manakov Equation for dual polarization. We achieve this by

effectively "compressing" the signal before processing through the compensation of chro-

matic dispersion. While this operation restores symbols to their initial positions, it does
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introduce some level of corruption due to nonlinear effects during propagation. Following

dispersion compensation, we proceed to window the signal and subsequently decompensate

the dispersion to obtain a processed signal ready for analysis using the NFT.

To initiate the process, we compensate for the dispersion across the entire signal using the

equation:

AC D (t ) = F−1F [A(t )]e iφC D (ω), (2.6)

Here, F [·] and F−1[·] represent the forward and inverse linear Fourier transforms, respectively.

The phase shift φC D can be readily determined from equations (1.3) and (1.5) by setting γ= 0

and α= 0. It is given by:

φC D =−β2

2
ω2L. (2.7)

Here, β2 denotes the second-order dispersion coefficient of the fiber, ω is the angular fre-

quency, and L represents the length of the fiber.

Subsequent to dispersion compensation, we apply the same window operation as described

in equation (2.3). We then proceed to decompensate the dispersion using the same phase

shift (2.7). This results in:

Aw,C D (t , tw ) = AC D (t )W (t , tw ), (2.8)

Aw̃ (t ) = F−1F [Aw,C D ]e−iφC D (ω), (2.9)

The final solution for a processing window using the dispersion-compensated window mode

is depicted below:

Aw̃ (z = 0, t , tw ) =Wpr oc (t , tw ) ·NFT[Aw̃ (z = L, t , tw )]. (2.10)

Similar to the conventional window mode, we can increment tw = tw +Tpr oc to continuously

process the full signal.

For the practical implementation of the signal recovery process using the NFT, we need to

introduce additional variables. To construct a time window for the recovery of the full signal,

we employ the following expression:

Tw = Tpr oc +2 · (Rd ·Td +Tz ); Tpr oc = N ·Ts . (2.11)
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Here, Tpr oc represents the processing interval with N symbols, and Ts denotes the duration

of one symbol interval. The term Rd acts as a scale factor for the dispersive length, while the

term Tz corresponds to the number of additional empty symbol slots added to each side of

the processing interval, enhancing the accuracy of the NFT.

Continuous WDM signal (z = L)

Cut WDM signal after NFT (z = 0)

Cut WDM signal with de-compensated CD (z = L)

Continuous WDM signal after CDC (z = 0) Window cut Tw = Tproc + 2(RdTd + Tz)

Tx signal in Tproc

Take signal at Tx in Tproc

Continuous WDM signal (z = L) Move window to next Tproc And cover all signal

Figure 2.2: Schematic representation of the processing procedure for a continuous WDM signal
utilizing NFT. The initial step involves performing CDC for the entire signal. Subsequently, we
extract a window of size Tw (as defined by Eq. (2.11)) and compensate for the dispersion. The
resulting signal undergoes NFT processing to recover the transmitted signal. This procedure is
repeated iteratively for successive processing intervals.

The final procedure for processing a continuous WDM signal with NFT can be summarized as

follows (showed at Fig. 2.2):

• Compensate the dispersion of the propagated signal without additional equalization.

• Cut the required window in the compensated signal.

• Decompensate the dispersion for the windowed signal.

• Process the signal in the window using NFT (as it is already localized).

• Collect the full signal.
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Figure 2.3: Scheme of using compensated window mode. The left column shows the signal
processing steps. The right column shows an example of a signal NF spectrum processed
without dispersion precompensation (window) and with the method described above (com-
pensated).
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2.3 Results

2.3.1 One polarization (NLSE case)

The first step in researching the window method was to apply it to the NLSE as a simpler

model on which we could determine the method’s areas of applicability. The application of

the window method to the Manakov Equations will impose additional restrictions due to the

complexity of the model. Additionally, calculations for the NLSE are faster.

To evaluate the effectiveness of the proposed method, we utilized a single-channel 16-QAM

WDM signal (see Eq (1.1)). Simulations involved transmitting the signal over 12×80 [km]

spans of standard single-mode fiber (SSFM), complemented with distributed Raman amplifi-

cation (DRA). Two scenarios were considered: one noiseless scenario and another with DRA

noise, mimicking an erbium-doped fiber amplifier noise figure of 4.5 [dB]. The fiber had an

attenuation coefficient of α= 0 [dB/km], a dispersion coefficient of D = 16.8 [ps/{nm ·km}],

and a nonlinear coefficient of γ= 1.2 [W ·km]−1. Calculations were performed with 2 samples

per symbol.

Figure 2.3 illustrates the scheme for utilizing the compensated window mode. The left column

displays the signal processing steps. The first plot depicts the initial continuous signal, while

the second plot illustrates its propagation over a specified distance z. The third plot showcases

the signal after dispersion compensation. Subsequently, the fourth graph demonstrates how

the dispersion-compensated signal is windowed within a selected interval. This interval

is carefully chosen to ensure that the central (processing) interval remains unaffected by

the dispersion spreading from the cut portions of the signal. In the fifth step, dispersion is

reintroduced to the signal. Finally, the sixth plot displays the result of NFT reconstruction of

the initial signal. Consequently, the central interval of the signal is restored, denoted by the

cyan vertical straight lines. After processing one interval, we proceed to the next, sequentially

processing the entire signal.

The right column provides an example of an NF spectrum of a signal processed without

dispersion precompensation (window) and with the method described above (compensated).

In the upper graph, which compares the two spectra, a notable feature in the discrete spectrum

becomes apparent: when examining the maximum eigenvalues in the imaginary part, it

becomes evident that some of them coincide. Conversely, another subset of the windowed-

mode points deviates from the compensated-mode points (we are specifically considering

only the maxima in the imaginary part). We attribute this deviation to the influence of the

external (clipped) segments of the signal on the processed interval.

In Fig. 2.4 shows a comparison of the algorithms for NFT-CDC (dispersion precompensated)

and for NFT without additional processing. It can be seen from the graph that although the

NFT tries to repeat the waveform, it lacks reconstruction accuracy. For a pre-compensated

signal, the reconstruction accuracy is higher. We also noticed that, thanks to this approach,

we automatically satisfy the condition of zeroing the boundary conditions at the ends of the
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Figure 2.4: Example how NFT algorithm restore initial signal (red). Cyan – window mode
with preprocessed chromatic dispersion compensation, purple – NFT restoration for window
mode.

time interval to use the forward NFT. Thus, there is no need to fictitiously select a function at

the ends of the signals for zeroing. This also reduces the error received.

The presented approach has several parameters for optimization, such as Tpr oc , RD , and the

full window size Tw . For a corresponding propagation distance of 960 km, the dispersion

length Td equals 297 symbols or approximately 440 ps with Ts = 14.8 ps.

We performed the inverse NFT using the fast layer-peeling method from the FNFT library

(Ablowitz-Ladik scheme) [133]. It operates only with a number of computational nodes equal

to the degree of 2. Therefore, for such a long propagation distance, the minimum Tw must be

at least equal to 1024 (≈ 1.5 ns) to include 2Td intervals. We also considered a window size of

2048 symbols (≈ 3 ns) in total. The symbol interval of 4096 symbols turned out to be too large

for numerical computations due to the O (N log2 N ) complexity growth.

Direct NFT was performed in two separate steps. First, the phase jump tracking (PJT) [153,

154] with an adaptive step size was applied for discrete eigenvalue search. This method used

an effective exponential scheme of 6th order (ES6) with Padé approximation of the matrix

exponential [155]. Despite this, the discrete eigenvalue search was the most time-consuming

step of one calculation. Second, continuous spectrum computation was carried out using the

fast FNFT_TES4_5B scheme [156, 157], which provided the most stable results in conjunction

with the inverse FNFT scheme. We used upsampling of the continuous spectrum by a factor

of up to 16 times to enhance the stability of the inverse transform and improve the accuracy of

phase jump detection on the real axis.

One of the key practical considerations in our study is determining the appropriate pro-
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Figure 2.5: The dependence of BER (upper row) and Q-factor (lower row) versus the average
signal power P0. The left column corresponds to the noiseless case, the right column corre-
sponds to the noise power of 4.5 dB. Total window size is Tw = 2048. Processed symbol count
Tpr oc = 512. The dispersion broadening scale factor Rd = 1.2.
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cessing interval size, Tpr oc . To minimize additional computational effort compared to the

conventional approach, we aimed to maximize the processing interval size. Our investigations

revealed that a window of Tw = 2048 symbols is a more promising approach, as its wide zero

tails (Tz ) result in a small step in the frequency domain, which improves the accuracy of optical

field restoration.

In our subsequent investigations, we adopted a dispersion broadening scale factor of Rd = 1.2,

when processed symbol count was set to Tpr oc = 512. We also examined the influence of noise

on different values of the average power P0. Figure 2.5 presents a comparison between the

noiseless case and the case with noise of power 4.5 dBm. We found that the presence of noise

only slightly increases the discrete spectrum size.

Across all considered average power values, the NFT window approach outperformed DBP

with 2 steps per span in terms of Bit Error Rate (BER) and Error Vector Magnitude (EVM). In

some nonlinear regimes, the NFT approach demonstrated a greater accuracy than DBP with 3

steps per span. However, it should be noted that the accuracy of the NFT approach cannot be

compared to that of DBP with 10 steps per span.

2.3.2 Two polarization (Manakov equation case)

The dual-polarization scheme introduces a second polarization for the NLSE equation and

the interactions between the two polarizations. For real-world parameters, the effects of the

presence of two polarizations are sufficiently small and can be neglected in the first-order

approximation. Therefore, we use the approach, introduced in the paper [140], to deal with DP

signals. The authors introduced a novel dual-polarization transmission scheme with reduced

complexity that separately processes each polarization component. Instead of applying the

more complex NFTM – the NFT approach based on the Manakov Equation for encoding and

decoding information on the nonlinear spectrum – they proposed using independent NFTNLS

processing based on the NLSE channel for each polarization component of the signal. They

demonstrated that, in a certain range of system parameters where performance is dominated

by the effect of noise on the nonlinear spectrum, such reduced complexity processing can

even provide a performance improvement compared to full vector processing, despite the

mismatch between the channel model and processing.

Thus, we processed each polarization separately using NFT for NLSE. This approach proved

to be effective, and we managed to achieve a high level of performance.

One projection of BER values for 12 spans is presented in Fig. 2.6. Here, the result was obtained

by averaging over 100 launches for each value of the average power P0. When compared to

signal recovery, which was modeled by NLSE, accuracy degradation is noticeable. Previously,

NFT allowed signal recovery with higher accuracy than that of DBP with 3 steps per span. Now,

NFT is applied separately to each polarization. However, the accuracy of a 2-step/span DBP is

achieved, and for higher powers, the accuracy approaches that of a 3-step/span DBP.
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Figure 2.6: The dependence of BER (left) and Q-factor (right) versus the average signal power
P0. The left column corresponds to the noiseless case, the right column corresponds to the
noise power of 4.5 dBm. Total window size is Tw = 2048. Processed symbol count Tpr oc = 512.
The dispersion broadening scale factor Rd = 1.2.

2.4 Conclusion

In summary, in this part of the work we introduce a novel method for enhancing the accuracy

and efficiency of continuous signal processing using the Nonlinear Fourier Transform, a com-

plex problem in the field of signal processing. The proposed method effectively addresses the

limitations of traditional NFT algorithms and offers a promising solution for signal processing

applications across diverse fields.

We have conducted an extensive analysis of the underlying mathematical principles and

supported our findings with numerical simulations, illustrating the efficacy of this proposed

approach in various scenarios. Our methodology is applied to both the Nonlinear Schrödinger

Equation, simulating single polarization signal propagation in optical systems, and the Man-

akov Equation, which characterizes light propagation in a two-polarization optical fiber.

The method leverages a sliding window technique, dividing a continuous signal into non-

overlapping segments, with each segment undergoing a nonlinear operation like NFT to

transform it into a discrete representation. The size of the window, a crucial parameter influ-

encing the accuracy and resolution of the analysis, is optimized through numerical simulations.

There exists a direct correlation between the window size employed in a processing system

and the overall system speed. Larger window sizes allow for more data to be processed at once,

resulting in increased processing speed. However, it’s important to note that there may be

diminishing returns as window sizes become excessively large, as the heightened processing

power required to handle larger datasets might offset the gains in processing speed. Therefore,

achieving an optimal balance between window size and processing power is imperative for

system performance optimization.
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We evaluated the proposed method using a single-channel Wavelength Division Multiplexing

signal, a common feature in optical communication systems. The results demonstrate that

the proposed method yields a lower Bit Error Rate compared to the traditional NFT algorithm,

underscoring its effectiveness.

This approach paves the way for practical implementation in real communication systems. Its

adaptability and flexibility make it suitable for a wide array of signal processing applications

spanning various fields, including nonlinear optics and quantum optics.

Future research in this domain could delve into investigating the impact of point drift on signal

reconstruction quality using NFT, as well as the development of optimization techniques for

various parameters within the proposed method, such as window size, with the aim of further

enhancing accuracy and efficiency.

As a final note, we want to stress that an extensive part of this analysis was related to code

creation, which can be found in the GitHub repository at nft-processing. The repository

includes comprehensive code examples and Jupyter notebooks to reproduce the results.
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3 Evaluating OFDM and WDM Soliton
Content through Nonlinear Fourier
Analysis

3.1 Criteria Analysis for the Existence of Discrete Spectrum

Above, we saw that there is a criteria for signals of a certain form, which determines the

possibility of the existence of discrete eigenvalues in the Zakharov-Shabat problem. The

imprecise criterion described in [99] is that if L1 norm, defined by the formula

L1(q) = ∥q(t ,0)∥L1 =
∫︂ +∞

−∞
|q(t ,0)|d t (3.1)

(where q(t , z) is signal to study, t and z — time and space coordinates), is less than 1.317, then

the system (1.15) does not have a discrete spectrum.

Later, in 2003, Klaus and Shaw found an exact criterion in [158]. For the complex initial

condition q(t ,0), there is no discrete spectrum if

∥q(t ,0)∥L1 ≤
π

2
. (3.2)

If L1 norm is greater than a given value, then a discrete spectrum may exist (but not necessarily

exist).

In this study we use both the L1 norm (3.1) and the L2 norm

L2(q) = ∥q(t ,0)∥L2 =
∫︂ +∞

−∞
|q(t ,0)|2d t , (3.3)

for which there is no criterion like (3.2). However, for numerical simulation, we can obtain

a criterion that can give us some preliminary information about the L2 levels of the norm,

and therefore about the average signal power, less than which there cannot be any discrete

spectrum in the signals. Without loss of generality, we consider the signal q(t , z) for a fixed

spatial coordinate z. Subsequent calculations are performed in dimensionless units.
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L1 = ∥q(t , z)∥L1 =
N−1∑︂
n=0

|qn |∆t , (3.4)

L2 = ∥q(t , z)∥L2 =
N−1∑︂
n=0

|qn |2∆t , (3.5)

where ∆t = T /N , T is the time interval on which the function q(t , z) is defined, N is the

number of sampling points, qn are the values of the function q(tn , z) at these points. Since we

have some finite set of qn values, we can calculate the average value for this set

< |qn | >= 1

N

N−1∑︂
n=0

|qn | = L1

N∆t
= L1

T
, (3.6)

< |qn |2 >= 1

N

N−1∑︂
n=0

|qn |2 = L2

N∆t
= L2

T
, (3.7)

where the brackets < ... > denote the operation of taking the average. The modulus of complex

numbers is real and satisfies the condition |qn | ≥ 0. Also the value of L1 is equal to or greater

than 0 by definition. Now remember that the average of the square of a positive value is greater

than or equal to the square of the average of this value (generalized mean inequality), one can

write

< |qn |2 > ≥ < |qn | >2 ⇒ L2

T
≥ L2

1

T 2 . (3.8)

It remains to obtain the constraint on L2
1 from the criterion 3.2). First of all, we note that π

2 > 1,

which implies

L1 > π

2
⇒ L2

1 >
π2

4
⇒ L2

1

T
> π2

4T
. (3.9)

We can conclude that the criterion for the existence of discrete eigenvalues of the Zakharov-

Shabat problem for the L2 norm:

L2 > π2

4T
. (3.10)

It is not surprising that in the limit T →∞ the criterion reduces to a simple L2 > 0. However,

in most problems, the signal is localized in time, so the integral over an infinite interval in the

formula (3.3) can be replaced by an integral over a finite interval, where the signal is not zero

L2˜︂ = ∥q(t , z)∥L2˜︂ =
∫︂ T /2

−T /2
|q(t , z)|2d t , (3.11)

for which the criterion (3.10) works.
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3.2 Soliton Content

3.2.1 Methodology

The method of nonlinear Fourier transform allows us to examine the nonlinear component

of the signals that were developed in the framework of the linear theory. The mathematical

apparatus of the nonlinear Fourier transform allows a better understanding of the structure of

the signals, as well as their features associated with nonlinear effects. Standard signals can

(at a certain power level) contain coherent structures — solitons. Solitons can be represented

as q(t) = Asech(At +δ)e2iωt+iθ and are of interest from an applied point of view, since they

contain four variable parameters in which information can be encoded: soliton amplitude A,

time shift δ, soliton complex frequency ω and phase shift θ.

The fact of the presence of solitons in a signal can be detected using the direct Zakharov-

Shabat problem. The spectrum of the operator L in the problem (1.16), where the function

q(t , z) is the signal to study, can give a representation of the structure of this signal. If there

are discrete values in the spectrum, then there are also solitons. This feature will be used

for further analysis of standard optical signals, and the number of solitons is determined by

the formula (A.38). By standard signals, we mean WDM and OFDM systems, which are now

widely used for optical communication (see Section 1.4). For the futher analysis of signals, we

use numerical algorithms, which are described in Appendix A.1 and previously tested on test

signals: a rectangular pulse and a Satsuma-Yajima signal.

The signal parameters at which solitons can exist depend on the system. For further study, we

consider two parameters inherent in each signal. They are the L1 and L2 norms, calculated as

follows:

L1(q) = ∥q(t , z)∥L1 =
+∞∫︂

−∞
|q(t , z)|d t , (3.12)

L2(q) = ∥q(t , z)∥L2 =
+∞∫︂

−∞
|q(t , z)|2d t , (3.13)

where q(t , z) is signal to study, t and z — time and space coordinates.

In general, signals may comprise multiple solitons. When the average power of a signal coin-

cides with the soliton existence threshold, the resulting set of signals with random data may

include those without solitons or those with one or more solitons. The left panel of Fig. 3.1

depicts a scenario in which solitons within an OFDM symbol are rare, chosen specifically by

setting the symbol average power to -20 dBm. This power level demonstrates that solitons are

not always present, highlighting their sporadic emergence influenced by the random distri-

bution of data within the symbol. It is observed that symbols can contain multiple solitons,

exhibiting a pattern that aligns with Poisson statistics (P (x;λ) = e−λλx /x!), as illustrated on

the graph. Conversely, the right panel contrasts with a higher average power of -15 dBm, en-

suring that every symbol contains at least one soliton, regardless of its internal data structure.
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Figure 3.1: The probability of soliton occurrence in an OFDM signal with QPSK modulation,
64 subcarriers and an average power of -20 dBm (left) and -15 dBm (right).

This situation reflects a consistent probability of soliton presence, with the average number

of solitons being influenced by the power level but showing variability due to the random

nature of the OFDM symbol’s internal data. This variability adheres to a Gaussian distribution

G(x) = 1
σ
⎷

2π
e−

(x−µ)2

2σ2 , where µ is the mean and σ is the standard deviation. This emphasize the

influence of random data on the statistically determined number of solitons within a symbol.

In the first phase of our study, we focus exclusively on the occurrence of solitons within the

signal. Notably, we quantify the presence of solitons rather than their quantity or individual

properties. Consequently, we define the probability of a discrete spectrum’s presence as the

proportion of signals containing at least one soliton relative to the total number of signals

with specific parameters.

The signal’s average power, denoted as Pave, correlates with the L2 norm (see Equation 3.3)

through the relationship Pave = L2
T , where T represents the symbol interval, the duration of a

single symbol. Power measurements adopt milliwatts (mW) and decibels-milliwatts (dBm),

with the conversion given by PdBm = 10log10(PmW).

For our numerical simulations, we apply specific optical fiber parameters: the group velocity

dispersion β2 = −21.5 ps2/km and the Kerr nonlinearity coefficient γ = 1.27 W−1/km. It is

crucial to note that at this stage, we have not considered signal propagation, meaning our

analysis pertains solely to the initial conditions, framing it as a Cauchy problem for the NLSE.

To ascertain the operational ranges for optical signals, we reference the soliton existence

criterion as expressed in Eq. (3.10), given in dimensional form by

Pave > |β2|π2

4γT 2
s

, (3.14)
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Figure 3.2: The dependence of the criteria (3.14) in dimensional units on the symbol duration
T .

where Ts denotes the interval of interest, equivalent to the duration of a single symbol in

OFDM or WDM signaling. Figure 3.2 illustrates the relationship between the minimum

average power necessary for the potential existence of a discrete spectrum and the symbol

duration. The symbol durations examined herein are highlighted by green lines. For instance,

at 10 ns, the threshold lies below -30 dBm (specifically, -33.8 dBm), whereas at 100 ps, the

requisite threshold significantly increases to 6.2 dBm. These thresholds guide the selection

of appropriate power levels for examining each signal type. Notably, the graph displays the

aggregate average power; however, in the context of WDM systems, the average power per

channel is typically the metric of interest. This distinction is accounted for in subsequent

recalculations.

3.2.2 OFDM symbol

The mathematical formulation of an OFDM symbol generation is detailed in Section 1.4.2,

specifically in Equation 1.76. Dimensionally, we investigate OFDM symbols with a duration of

10 ns and modulation schemes including QPSK, 16-QAM, 64-QAM, and 1024-QAM. The count

of subcarriers ranges from 16 to 1024, with a full Fast Fourier Transform (FFT) size of 1024.

Initially, our analysis sought to determine if soliton numbers within a signal were affected by

changes in FFT size. Our findings indicate that the soliton count remains invariant, provided

the FFT size is fixed at 128.

Further analysis was conducted on 200 simulated symbols with random input data, holding the

parameters constant for each point graphed. The Mersenne Twister algorithm, mt19937, was

utilized for generating 32-bit pseudo-random numbers with a 19937-bit state size. Figure 3.3

presents the correlation between the probability of soliton formation in a signal and the L1

norm, for a configuration with 128 subcarriers modulated by QPSK and 16-QAM. The baseline
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Figure 3.3: Dependence of the probability of soliton occurrence in OFDM signals with 128
subcarriers and QPSK and 16-QAM modulation.

L1 norm value, calculated as per Equation 1.57 and equal to 1.57, falls outside the left margin

of the graph. In the following sections, the discussion explores how the likelihood of soliton

occurrence is influenced by the average power of the signal, as this measure has a direct

physical interpretation and can be quantified experimentally.

a) b)

Figure 3.4: The dependence of the probability of soliton occurrence for OFDM signals with
16-QAM and a symbol duration of 10 ns from (a) on average signal power, (b) on average signal
power per channel.

Figure 3.4(a) displays the relationship between the probability of soliton presence in OFDM

signals with 16-QAM modulation and the average signal power. It is observed that as the

number of subcarriers increases, so does the required power for soliton formation. This effect

can be explained in Figure 3.4 (b), which presents a corresponding graph considering that

the average power is distributed across each individual subcarrier. This plot clarifies that

the probability of soliton existence is actually governed by the power density within each
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subcarrier, independent of the total number of subcarriers. Consequently, an augmentation

in the number of subcarriers necessitates a proportional increase in overall signal power to

sustain soliton presence. Same trends are detected for different modulation schemes, as

depicted in Figure 3.5. The findings suggest that the operational power bandwidth per channel

conducive to solitons lies between −42 dBm and −37 dBm. Leveraging this insight allows us

to approximate the soliton existence thresholds for varied signal configurations.

a) b)

c) d)

Figure 3.5: The dependence of the probability of soliton occurrence in the OFDM symbol with
a duration of 10 ns and (a) QPSK, (b) 16-QAM, (c) 64-QAM, (d) 1024-QAM modulation on the
average signal power per channel.

However, the type of modulation also affects the probability distribution. Figure 3.6 demon-

strates that with an increase in the order of the constellation diagram, and hence with an

increase in the number of bits of information encoded in one symbol, the required average

signal power for the existence of solitons decreases. This fact is well seen when comparing

QPSK and other types of modulation. Irrespective of the number of subcarriers, there is a

tendency that for QPSK modulation, the average signal power is higher than for others. If we

E.Sedov, PhD Thesis, Aston University 2023 57



3.2 Soliton Content

proceed to the dependence on the average power per channel, the situation will not change

(Fig. 3.7).

a) b)

c)

Figure 3.6: The dependence of the probability of soliton occurrence in the OFDM symbol with
a duration of 10 ns and (a) 128, (b) 256, (c) 1024 subcarriers on the average signal power.

As expected, for a complex signal the level of L1 and L2 norms (and hence Pave ), at which

solitons exist in the signal, is higher than for a simple rectangular signal. This is consistent with

the criteria (3.14), which can also be used for preliminary analysis in other existing systems.

In the general case, solitons and dispersion waves propagate through the fiber in different ways.

The most important difference is that the dispersion for solitons is balanced by nonlinear

effects. The existence of solitons in a standard OFDM signal has the potential to make some

contribution in propagation. Understanding of this fact may affect coding and modulation

of signals in optical communication, as it can lead to an improvement in the efficiency of

optical communication lines. However, in practice, the appearance of solitons does not have a

large effect on the propagation dynamics of the OFDM signal at the considered power levels.
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Figure 3.7: The dependence of the probability of soliton occurrence in the OFDM symbol with
a duration of 10 ns and 128 subcarriers on the average signal power per channel.

At higher levels, it is already possible to observe the evolution of individual solitons in a

common signal, however, these events are rare, and more research is needed to determine the

parameters and degree of influence of solitons on the signal.
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3.2.3 WDM symbol

WDM technology enables the simultaneous transmission of multiple data channels through

a single optical fiber, each at a different frequency. WDM works by sending information

on various wavelengths within the same fiber-optic line, with each wavelength known as a

"channel," a term we will use throughout.

Data is transmitted using a specific modulation format. The carrier frequency for each channel,

fn , is determined by the formula:

fn =∆ ·n, n =−N /2. . . N /2, (3.15)

where ∆ represents the spacing between channels, which in this case is set to 25 GHz as

detailed in Eq. (1.69). The duration of one symbol is 100 ps.

At this point, we’re looking at WDM signals that use different modulation formats such as

QPSK, and 16-, 64-, and 1024-QAM. We also vary the number of channels from 9 to 51. Just

like we did with OFDM signals, we gathered data on 200 WDM symbols for every combination

of parameters. Figure 3.8 displays the probability of existence in a signal, depending on the

average power per channel for different types of modulation and different number of channels.

It’s important to note that these measurements are for power in each WDM channel, not the

total power across all channels.

When we look at the chart in Fig. 3.8 (a), we see that for QPSK modulation, the necessary power

level is quite a bit higher—between 5.8 dBm and 7 dBm—compared to other modulations.

For 16-, 64-, and 1024-QAM, this range is broader: from 2 dBm to 6 dBm. As we use more

channels, the minimum power needed tends to go down, and this reduction is consistent

across all modulation types. Just like with OFDM signals, as the complexity of the modulation

increases (from QPSK to 1024-QAM), the power needed to detect solitons gets lower (as shown

in Fig. 3.9).

Additionally, for WDM signals, QPSK modulation requires much more power compared to

other modulations when it comes to finding solitons. There’s also a more pronounced differ-

ence between 16-QAM, 64-QAM, and 1024-QAM for WDM signals than for OFDM signals. For

instance, if we increase the number of channels to 51, the power required for 16-QAM and

64-QAM starts to diverge significantly, as depicted in Fig. 3.9 (d).

These features demonstrate that, despite the similar signal generation processes, WDM and

OFDM systems have a different internal structure, and also depend on the selected parameters

in different ways.

The results obtained for WDM and OFDM symbols show that coherent structures are an

integral part of these systems, and therefore should be study along with other effects. The

results are interesting because the features associated with nonlinearity can be evaluated and

used in practice. Now, we moving forward to the analysis of more complex structuers - WDM
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a) b)

c) d)

Figure 3.8: The dependence of the probability of solitons occurrence in a WDM signal on the
average signal power per channel with a duration of 100 ps and (a) QPSK, (b) 16-QAM, (c)
64-QAM, (d) 1024-QAM modulation.
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a) b)

c) d)

e) f)

Figure 3.9: The dependence of the probability of soliton occurrence in a WDM signal with (a)
9, (b) 11, (c) 13, (d) 15, (e) 31 and (f) 51 channels.
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signals.

3.2.4 WDM signal

In this study, we examined a fiber optic line with a single channel WDM signal using a 16-

quadrature amplitude modulation (16-QAM) symbol sequence at a symbol rate of 34 [GBd] in

a single polarization. The signal, shaped by a digital Root Raised Cosine (RRC) filter with a 0.1

roll-off factor, covered 12×80 [km] spans of Standard single-mode fiber (SSMF). Signal average

power Pave varied between -25 and 6 dBm. Simulations, run in a noise-free environment,

utilized an Split-step Fourier method (SSFM) model operating at a wavelength ofλ= 1550 [nm]

characterized by an attenuation coefficient α = 0.0 [dB/km], a dispersion coefficient D =
16.8 ps/[nm ·km], and a nonlinear coefficient γ= 1.2 [W ·km]−1. For window processing, the

CDC-window mode was employed with parameters: processing interval Tpr oc is 32 symbols

and dispersion side intervals Td = 300 symbols.
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Figure 3.10: Upper: Soliton energy proportion in WDM signal. Lower: Average soliton count
at various power levels.

The upper image in Fig. 3.10 illustrates the proportion of signal energy that comprises the

soliton component within a WDM signal. The lower image displays the average quantity of

solitons at specific power levels. These representations are based on the statistics of 1024

distinct windowed intervals for the WDM signal. It is important to note that the step shift is

equivalent to Tproc, resulting in overlapping windows. However, this overlap does not affect

the overall trend, as the contributions from identical solitons, which may be counted multiple

times, are averaged out. Consequently, we observe consistent behavior for non-overlapping

intervals as well.
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At lower average signal power levels, the soliton component is absent, with both the number

and energy of solitons being zero, as expected. Interestingly, an increase in power leads to a

rise in the energy allocated to the soliton component. Commencing at approximately -20 dBm,

the count begins to ascend, followed by a corresponding increase in the soliton energy fraction.

Near the 1-3 dBm range, almost 99% of the energy attributed to solitons within the signal, and

this proportion remains stable even as the average power level continues to increase (up to

the maximum observed level of 6 dBm).

The number of solitons does not saturate at the same level (around 1 dBm) and continues to

grow with an increase in average power. Notably, even at 5 dBm and 6 dBm, a distinction in the

soliton count is evident. This phenomenon suggests that, beyond a certain saturation point of

power, where the majority of the energy is soliton-associated, the number of solitons can still

proliferate. This implies that the emergence of higher-energy solitons becomes unlikely, while

the system favors an increase in lower-energy solitons that collectively assimilate the available

energy.

From a physical perspective, systems gravitate towards a state of minimal energy, which is more

readily achieved by integrating multiple low-energy solitons rather than a combination of a few

high-energy and several very low-energy solitons. Statistically, it is also more likely to obtain

uniform results across different signal realizations with typical energy levels than with extreme

soliton power values. These observations foster a discussion regarding the implications of the

data, setting the stage for following validation of our preliminary interpretations.

Figure 3.11 displays the distribution of discrete points in the NF spectrum, which corresponds

to the number of solitons, across different average signal power levels. Starting with the

upper left plot at the lowest power of −19 dBm, the power increases from one plot to the next,

culminating in the lower left figure at the highest power of 5 dBm. This range of power levels,

as seen in Fig. 3.10, spans from scenarios with nearly no solitons to those where the power is

predominantly in soliton form.

Additionally, Fig. 3.12 complements the previous figure by presenting the distribution of the

maximum imaginary part of the NF spectrum, which is directly related to soliton power (refer

to Eq. 5). Our prior analysis on soliton content within single symbols indicates that certain

power levels, particularly at the boundaries like −20 dBm (Fig. 3.12) and −19 dBm (first panel

of Fig. 3.11), are not well-characterized by a Gaussian distribution. In these instances, a

Poisson distribution offers a more accurate representation.

Excluding the borderline power levels up to −16 to −15 dBm, where a Poisson distribution may

still be more appropriate, we observe that the standard deviation of the Gaussian distribution

tends to decrease with increasing power. For power levels above this range, our preliminary

data suggests a Gaussian standard deviation in the vicinity of 7.0 to 7.4. This value narrows

to around 6.0 for power levels near −2 to −1 dBm, and even further to 5.0 for power levels

between 2 and 5 dBm.
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Figure 3.11: Comparison of soliton distibution for WDM signal with differnt average signal
power.
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This trend hints at a region of stability where the occurrence of solitons is statistically more

predictable and exhibits less variation. This stability may indicate the formation of physical

structures akin to a “soliton gas”, where solitons exhibit particle-like behavior, and thermody-

namic principles could potentially apply.

At 6 dBm, as shown in the lower pane of Fig. 3.12, the standard deviation increases to 5.75. This

could suggest either a statistical anomaly or the onset of a more complex system structure,

necessitating further investigation. The concept of a soliton gas is an intriguing one that aligns

with this observation, but it requires additional research to fully understand the relationship

between soliton statistics and thermodynamic properties.

Figure 3.13 illustrates the distribution of discrete eigenvalues in the NF spectrum across the

complex plane at varying signal power levels, beginning at −15 dBm in the upper left and

concluding at 6 dBm in the lower right panels. The intensity of the blue color represents the

density of points within the spectral space. Accompanying the main graph, histograms along

the top and right edges display the distributions of the real and imaginary parts, respectively.

At lower power levels, a substantial presence of solitons is evident, with an average count of

approximately 60 for −15 dBm and about 214 for −10 dBm. These figures indicate that the

real part of the discrete spectrum is evenly distributed, aside from the spectral edges where

the signal’s bandwidth limit has an effect. For the imaginary part, the distribution shows a

general decline with an increase in the imaginary value, suggesting a higher prevalence of low-

and mid-energy solitons over those with high energy. This pattern is consistent even at −5

dBm, as shown in the second row, first panel of Fig. 3.13.

As the average signal power increases, a notable change occurs: low-energy solitons begin

to cluster at the boundaries of the spectral intervals. This clustering is observable at 0 dBm

and becomes more noticeable at 3 and 6 dBm, where the right histograms reveal a significant

peak near the real axis. Beyond this peak, there is a gradient decrease in the imaginary part of

the discrete eigenvalues. In Fig. 3.10, we observed that for average signal powers exceeding

1 dBm, the signal reaches a saturation point, with nearly all (99%) of its power comprised of

solitons. Yet, as the power continues to increase, so does the number of solitons, suggesting

an accumulation of lower-energy solitons and a concentration at the spectral interval edges.

The underlying reasons for this tendency are not immediately clear, but from a physical

standpoint, it could be assumed that this pattern represents an energy-efficient arrangement

of discrete eigenvalues within the spectral space.

3.2.5 Conclusion

This study demonstrates that solitons are an integral component of optical communication

signals. From the analysis of single symbols, which reveals the close relationship between

solitons and the signal’s internal structure—such as independent subcarriers in OFDM or

different channels in WDM—to the examination of complex WDM signals that may contain
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Figure 3.12: Comparison of soliton distibution and distribution of maximum discrete eigen-
value

E.Sedov, PhD Thesis, Aston University 2023 67



3.2 Soliton Content

1.5 1.0 0.5 0.0 0.5 1.0 1.5
( n)

0.000

0.001

0.002

0.003

0.004

0.005

(
n)

Pave = 15

1.5 1.0 0.5 0.0 0.5 1.0 1.5
( n)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(
n)

Pave = 10

1.5 1.0 0.5 0.0 0.5 1.0 1.5
( n)

0.00

0.01

0.02

0.03

0.04

0.05

(
n)

Pave = 5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
( n)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(
n)

Pave = 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
( n)

0.00

0.05

0.10

0.15

0.20

0.25

(
n)

Pave = 3

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
( n)

0.0

0.1

0.2

0.3

0.4

(
n)

Pave = 6

Figure 3.13: Distribution of discrete eigenvalues in the NF spectrum across the complex plane
at varying signal power levels, beginning at -15 dBm in the upper left and concluding at 6 dBm
in the lower right panels.
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dozens or even hundreds of solitons, it is evident that nonlinear structures can have a signifi-

cant influence on signal formation. This realization provides us with valuable insights that

could inform further research and enhancements in modulation techniques or signal formats.

We observed that the statistical behavior of WDM signals offers clues about the internal

thermodynamics of the ‘soliton gas’ present within these signals. Leveraging such statistics

could lead to a more profound understanding of the nonlinear interactions occurring within

the signal, ultimately contributing to improvements in transmission quality. If we can decipher

the effects, we may be able to devise methods to mitigate or even exploit them to our advantage,

similar to the use of solitons for data transmission. While the subsequent stages of this research

are outside the context of this thesis, it is clear that the nonlinear Fourier properties of signals

open up numerous possibilities for future exploration.
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4 Neural Network-based Nonlinear
Fourier Transform Algorithms

4.1 Introduction

Since linear, nonlinear, and noise effects manifest themselves simultaneously when we trans-

mit data over fibre-optic communication lines, such systems are well fit to be dealt with using

the latest advances in machine learning methods. Using these methods, it is possible to solve

the problem of multidimensional optimisation (for example, in terms of data transmission

quality and data throughput maximisation) without having to iterate through all possible

parameter values. Of particular relevance is the problem of identifying some internal features

and patterns of the transmitted data, where neural networks can be used to simulate various

effects that affect the signal when it propagates through a noisy nonlinear medium. In other

words, neural networks can be used to simulate nonlinear transformations without the need

for direct calculation of these transformations. The advantage lies in the speed and versatility

of the transformation, as well as the flexibility and adaptability of operations based on a neural

network: the network does not know what data it processes; it looks for the necessary features

in the data that affect the final result, and then extracts them. This process is called feature

extraction. Thus, if we want to calculate a certain value of a function, instead of (possibly)

complex calculations, we can use a pre-trained network that, with a pre-known number of

operations, will give the desired result. The difficulty is that the neural networks need to be

trained up-front on the known data. Another advantage of signal processing based on neural

networks is that networks can reduce the noise component present in the analysed data [38].

In practice, we almost always encounter a situation where there is some noise in the data,

for example, due to the finite accuracy of measurements, and its presence may be critical for

accurate data processing methods. A neural network can effectively filter out unnecessary

information within itself, leaving only the basic features needed for a specific task. Note that

one of the disadvantages of using neural networks is the final accuracy of the result attainable

with the use of a trained network. However, in practice, the accuracy of a neural network

is sufficient for most tasks and sometimes even exceeds the accuracy of existing numerical

methods if the necessary set of training data is available.
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The first direction of utilising NNs for NFDM systems consists in applying the additional

NN-based processing unit at the receiver to compensate the emerging line impairments

and deviations from the ideal model [159–163]. But, despite ensuing transmission quality

improvement, this type of NN usage brings about the additional complexity of the receiver. In

the other approach, the NFT operation at the receiver is entirely replaced by the NN element.

It has been shown that this approach, indeed, results in a considerable improvement of the

NFT-based transmission system functioning [76, 164, 165]. But, despite the benefits rendered

by such a NN utilisation, the NNs emulating the NFT operation have so far been mostly used

in the NFDM systems operating with solitons only, and the NN structure used there was

relatively simple. In the only work related to the continuous NF spectrum recovery [166], a

standard “imageInputLayer” NN (developed originally for hand-written digits recognition)

from MATLAB 2019a deep learning toolbox was adapted to process the signals of a special

form. Such an approach, evidently, has limited applicability and flexibility and is not optimal

neither in terms of the result’s quality nor in the complexity of signal processing. In our current

work, we demonstrate how this direction can be significantly extended and optimised by

using Neural network (NN) for modeling the continuous part of the Nonlinear Fourier (NF)

spectrum. We show how NNs could be used to detect the discrete spectrum and demonstrate

the use of optimization tools to choose the best NN design. Our research aims to establish

a foundation for creating highly effective NFDM systems that work well with any channel.

Additionally, we don’t just focus on finding the NF spectrum r (ξ), but also on the b-coefficient,

which can be used in the most effective method of NFDM known as b-modulation.

The foundation of this chapter’s content is the outcomes reported in [167–169]. This chapter

is structured as follows: At the close of the introduction, we detail the data format employed

throughout the chapter. Subsequent to this, we start with an initial exploration of utilizing

Neural network (NN) to execute both forward and inverse Nonlinear Fourier Transform (NFT)

operations on signals without solitons, which have been omitted from the dataset. The

following section is dedicated to signals that do contain solitons, focusing on the application

of NN to estimate soliton quantities. The core section presents a case study in which a neural

network is applied to predict the continuous NF spectrum of soliton-free signals in case of

noise interference. The chapter concludes with a discussion on prospective routes for future

research.

4.1.1 Data format

In the following examination of optical signals, we utilize the WDM format (see Eq. (1.69)).

In this section, we express the WDM signal in dimensionless units, a practical necessity for

applying the NFT in our analysis. The mathematical representation of a return-to-zero (RZ)

WDM symbol is given by:

s(t ) = 1

Q

M∑︂
k=1

Ck e iωk t f (t ), 0 ≤ t < T, (4.1)
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Input 2 x 1024

Conv 8

Conv 16

Conv 32

Conv 64

Conv 128

FC 2048

FC 1024

Output

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Conv 256
ReLU

(a)

(b)

(c)

Figure 4.1: (a) Proposed architecture of the NN that performs the NFT operations. (b) Value
of the relative error ηr (ξ) between the precomputed and predicted continuous spectrum. (c)
Value of the relative error ηq (t ) between the original and predicted signal.

where M is a number of WDM channels, ωk is a carrier frequency of the k-th channel, Ck

corresponds to the digital data in k-th channel, and T defines the symbol interval. Q in (4.1)

is the normalisation factor that we use to set the required energy for each signal (the total

signal energy is calculated according to Eq. (4.5)). In Eq. (4.1), each coefficient Ck represents a

complex number selected from a constellation diagram of a given size, meaning it is randomly

chosen from a predetermined set of possible values with uniform probability. For our NF

decomposition analysis each time we use a single signal of the form given in Eq. (4.1). f (t ) is

the waveform of the carrier pulse, defined as (and represented on Fig. 1.4):

f (t ) =
⎧⎨⎩1

2

[︁
1−cos

(︁4πt
T

)︁]︁
, 0 ≤ t ≤ T

4 or 3T
4 ≤ t ≤ T,

1, T
4 < t < 3T

4 .
(4.2)

4.2 Neural Network for Forward and Inverse Nonlinear Fourier Trans-

form

In this section, we use the NN to predict the continuous NFT spectrum of complex optical

signals and transform the spectrum back (the inverse NFT) into a signal. Convolution Neural
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network (CNN) are preferred over Feed-forward Neural Network (FNN) due to their efficient

processing of spatial hierarchies in data. This efficiency makes CNNs particularly suitable

for tasks where context and locality play critical roles. Unlike FNNs, which rely on simple

matrix multiplications that cannot capture complex spatial relationships, CNNs utilize layers

equipped with convolutional filters. These filters are adept at capturing spatial features at

various levels of abstraction, thereby allowing CNNs to identify patterns more effectively. The

significance of this capability becomes especially apparent in the context of the Nonlinear

Fourier Transform. NFT, not being a linear transformation, means the local context within

a time sequence greatly influences the outcome of the transformation. This nuanced influ-

ence of local context is something CNNs can handle well, thanks to their spatial processing

capability. For the random number generator, both here and in subsequent sections, I employ

the Mersenne Twister as the core algorithm. This choice is due to its well-documented high-

quality randomness and its exceptionally long period (219937 −1), as detailed by Matsumoto

and Nishimura (1998) [170].

To assess the quality of the NN prediction, we use the following formula defining the relative

error for the continuous NFT spectrum:

ηr (ξ) = |rpredicted(ξ)− ractual(ξ)|
〈|ractual(ξ)|〉ξ

, (4.3)

where 〈·〉ξ denotes the mean over the spectral interval, the “predicted” and “actual” indices re-

fer to the NN-predicted and precomputed values of the reflection coefficient r (ξ), respectively.

A similar formula for calculating the relative error for signal prediction:

ηq (t ) = |qpredicted(t )−qactual(t )|
〈|qactual(t )|〉t

, (4.4)

where q(t ) is a signal and 〈·〉t here is the mean over the time interval. The above relative error

ηr (ξ) and ηq (t ) is determined at the point ξ and t , respectively. We use 〈ηr (ξ)〉ξ and 〈ηq (t )〉t

to estimate the overall mean of the error. We stress that the metric was chosen in such a way

as to take into account even the regions where the value of the spectrum or signal is much less

than one.

Fig. 4.1a shows the architecture of the NN that performs the NFT operations (direct and

inverse transform), with the parameters given inside the figure. The NN consists of sequential

convolution layers and fully connected output layers. At the input, the network receives

a complex signal consisting of 1024 points. This NN predicts only one component of the

continuous NF spectrum, such that two identical NNs have to be used to predict the real and

imaginary r (ξ) parts. Similarly, converting the spectrum back to a signal requires two separate

NNs for the real and imaginary parts of the signal q(t). Each of the four NNs with the same

architectures we trained independently.

A total of 1024 points were selected to strike a balance between the computational complex-

ity of the Nonlinear Fourier Transform and the demonstration of the NN capabilities. This
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selection represents a synthetic case designed to start from simple signals, albeit with high

resolution, to showcase the potential of NNs to perform NFT operations. The choice of this

specific number was motivated by its sufficiency to illustrate NNs’ ability to execute both

forward and inverse NFT, while preventing the NN model from becoming overly complex. Fur-

thermore, the generation of the dataset required preliminary computations (i.e., performing

NFT), and larger signal sizes would have necessitated more extensive calculation time.

There are 94035 signals in the dataset, 9403 are used for validation and are not involved in

the training process. To generate the signals, we used random data sequences encoded in the

Quadrature Phase-Shift Keying (QPSK) format. The energy of all signals is the same and is

chosen at such a level that nonlinear effects are strong. At the selected energy, some of the

signals contained a discrete spectrum, but such signals did not get into the training dataset.

The continuous spectrum for each signal had been precomputed using the conventional direct

NFT methods. To train the NN, we used the mean squared error (MSE) as the loss function.

In training the NN, we employed the Adam (Adaptive Moment Estimation) optimisation

algorithm with a learning rate of 1e-4. On average, with the amount of data used, our learning

process took 50 000 epochs. To detect and mitigate overfitting during the training process, we

monitor the loss function value on a validation dataset, which is distinct from the training

dataset to ensure it does not influence the training directly. Additionally, we employ an early

stopping callback mechanism. This mechanism tracks the loss values for both the training and

validation datasets. Should the validation loss begin to increase – a phenomenon observed

over a range of epochs, in our case, from 100 to 500 across different studies – the training

process is halted. This strategy allows us to save the model at its peak performance, effectively

before the onset of overfitting.

Fig. 4.1b depicts ηr (ξ) – the difference between the predicted and actual (precomputed using

conventional NFT method) continuous nonlinear spectrum for the example signal, while

Fig. 4.1c shows the example of ηq (t) for the inverse NFT. We see from the graphs that NN

performs both forward and inverse transformations with high accuracy. Some increase in the

error at the centre for a continuous spectrum is associated with its localization in the middle.

While at the edges of the spectral interval, r (ξ) values tend to 0. There is no such feature for the

signal since it is evenly located over the entire time interval. The mean value over the entire

validation set of the mean relative prediction error of the continuous spectrum 〈ηr (ξ)〉ξ for NN

forward NFT is 2.68 ·10−3. For the inverse transformation, the mean over the entire validation

set of the mean relative signal prediction error 〈ηq (t )〉t = 1.62 ·10−4. The results obtained show

that the presented architecture can perform forward and backward NFT with high accuracy.

4.3 Discrete Spectrum Number Estimation

In this part, we used a neural network to predict the number of discrete eigenvalues in a

nonlinear spectrum of telecommunication signals. The discrete spectrum reflects the internal

structure of the signal, and knowledge of this structure allows one to find out the signal
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properties and the features of its propagation over a nonlinear optical fibre.

(a) (b)

Figure 4.2: (a) Example of the dependence of the amplitude of the WDM signal under study on
time (one of the possible implementations is given), and (b) example of the location of the
discrete spectrum components in the complex half-plane of the spectral parameter ξ for one
of the signals under study.

The signal was generated from a random dataset encoded in one of the modulation formats

for Ck : QPSK, 16-QAM, 64-QAM, and 1024-QAM, corresponding to 4, 16, 64, and 1024 possible

values of Ck , selected from the constellation on a complex plane. The number M of spectral

channels for each signal from the set was one of the following: {9, 11, 13, 15, 17, 31, 51}. This

set of values was taken to cover the number of channels used in existing WDM systems. An

example of the WDM signal amplitude is shown in Fig. 4.2a, while an example of a discrete

spectrum for such a signal is shown in Fig. 4.2b. The neural network architecture was based

on a simplified version of the VGG-16 network, which is used in image recognition problems

(Fig. 4.3a). Such architectures, where convolutional layers with the same number of input

channels are sequentially arranged, demonstrate high efficiency by reducing the number of

trained parameters while maintaining the overall prediction accuracy. To further improve the

accuracy, it is necessary to increase the number of convolutional layers. This increases the

learning time of the model; however, it allows us to select more features in the input data, and

therefore improve the operation accuracy. The neural network input receives a complex signal

consisting of 1024 points. This signal is converted to a vector with 2048 elements, in which the

real and imaginary parts of each point of the original complex signal are sequentially arrayed.

The signal is then processed by several convolutional layers with activation functions and then

passed through the fully connected layers. The network output shows the number of solitons

in the signal. The number of trained parameters in the network was 3 834 145.

In total, the training set consists of 174 847 generated signals, which contain from 0 to 20

solitons. The exact number of solitons in each signal was preliminarily calculated using a

modification of the method of contour integrals, where the grid step in the spectral space
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Figure 4.3: (a) Neural network architecture for predicting the number of discrete eigenvalues
(solitons) in the Nonlinear Fourier spectrum for a WDM signal. (b) the distribution of correct
and incorrect predictions of the neural network as a function of the number of solitons in
signals from the validation sample (the green curve shows the network prediction accuracy for
each set of signals with the same number of solitons), and (c) the distribution of the deviation
∆ of the predicted number of solitons in the signals from the validation sample versus their
actual number.
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was adaptively calculated depending on the number of solitons in the signal. To speed up

the learning process on the training data set, for each signal we calculate only the number of

discrete eigenvalues in the nonlinear spectrum, rather than the numerical value of each of the

discrete spectral parameters corresponding to the soliton mode. A set of data with complete

information on the nonlinear spectrum for each signal will be considered in subsequent works.

The accuracy of network predictions was determined using a validation set of 19 427 signals

(10 % of the total training set). The network was trained for 300 epochs, and the final prediction

accuracy on the validation set was 95.39%. In the training process, we use for optimisation

the Adam algorithm (adaptive moment estimation). The learning rate was varied during the

training process from 10−3 at the beginning to 10−5 at the end. Its further reduction did not

lead to an increase in the prediction accuracy. Figure 4.3b shows the distribution of correct

and incorrect neural network predictions as a function of the number of solitons in the signal

for the validation sample. The green curve shows the neural network accuracy as a function of

the number of solitons. The network worked best for signals where the number of solitons

was greater than 10. For such cases, the accuracy exceeded 98%. Signals with a single soliton

component were processed the worst, with an accuracy of 84%. In this case, the maximum

‘error’ of the network operation (the difference between the real number of solitons in the

signal and the soliton number predicted by our neural network) was 8 (Fig. 4.3c). Negative

error values correspond to the case when the network predicts a smaller number of solitons in

the signal than the true number, and positive values occur when the neural network predicts a

larger number of solitons than is present in the signal. Figure 4.3b shows the distribution of

the deviation of the predicted number of solitons in the signals generated by the validation

sample from their actual number: most of the incorrect results are in the range [–2; 2]. Thus,

the neural network’s prediction often deviates by a small value. This means that it captures

general features indicating the number of solitons but cannot fully identify particular features.

Obviously, with an increase in the number of convolutional layers, the neural network will

be able to determine the internal features of signals more accurately, which means that its

accuracy can be improved. The results show that neural networks have a great potential for

implementing various stages of NFT with their help.

4.4 Neural Network Approaches for Continuous Spectrum Analysis

in NFT

4.4.1 Introduction

In this section, we describe the main results obtained in the process of finding a suitable NN

architecture for computing the continuous NF spectrum of a given signal. The results of this

section have been published in [168]. First, we describe which type of signals we used in

training and testing. Next, we discuss the Bayesian optimisation application for our finding

the best-performing NN architecture and the respective training procedure. Then, we analyse

the output accuracy for the proposed NN architecture and compare it with that produced
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by a deterministic NFT numerical algorithm. In this study, for the data generation and “con-

ventional” computation we use the Fast Nonlinear Fourier Transform (FNFT) library[171]. At

the end of the section, we show that the proposed NN architecture can predict not only the

scattering coefficient r (ξ), but also the NF coefficient b(ξ), Eq. (1.21).

4.4.2 Training data generation

In this work, without loss of generality, we analyse the NF decomposition of the signals having

the form of Wavelength Division Multiplexing (WDM) format with random modulation and

return-to-zero carrier functions, considered in [141, 172].

To train the NN, we precomputed 94035 such signals, with Ck for each carrier randomly drawn

from Quadrature Phase-Shift Keying (QPSK) constellations, i.e. the constellations with 4

possible points; the number of optical channels (carriers) in (4.1) is 15. Then we sampled our

signal at equidistant points in time, tm , over the segment of length T , q(tm) = qm : the number

of sample points in each signal representation was 210 = 1024. The normalised symbol interval

T was set to unity so that the time step size used was ∆t = 2−10 (for the explicit normalisations

referring to single-mode fibre transmission see, e.g., Ref. [4]). For generated discretised profile,

the reflection coefficient r (ξ) was identified for 1024 sample points in ξ variable, calculated

using the fast numerical NFT method [171]. The parameter ξ for our computations ranged

from −π/(4∆t ) ≈−804 to π/(4∆t ) ≈ 804: this region corresponds to the conventional Fourier

spectrum computational bandwidth for the given sampling rate ∆t , up to the scaling factor

2 referring to the linear limit correspondence [59]. Each signal in the dataset was eventually

normalised so that its energy Esignal = 39.0. Some of the signals in the initial dataset for this

energy contained solitons, but such signals were singled out and removed from the training

and validation datasets. The remaining 94,035 signals did not contain solitons, which means

that the discrete nonlinear spectrum for each signal is absent, such that these are used in our

analysis. We note that although there are no solitons in the signals, we are still operating in

the regime where the signal nonlinearity is not negligible. The more straightforward way of

generating the datasets with desired properties would be to use the inverse NFT routines, but

these are much more time-consuming, such that we decided to employ the data-generation

approach described below: it also allows us to explicitly control the accuracy of the generation

process.

Together with the set of deterministic signals, we generated the signal sets with the addition

of uncorrelated Gaussian noise, adding the random value to each sample point. In realistic

applications, the source of this noise can be the instrumental imperfections of the transceiver

or the effects relevant to inline amplifiecation [49]. The Signal-to-noise ratio (SNR) is a

traditionally used characteristic for quantifying the level of a noisy corruption:

SNR = Esignal

Enoise
, Esignal =

N−1∑︂
m=0

|qm |2∆t , (4.5)
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where Esignal and Enoise are the signal and noise energies, respectively; qm is the m-th signal

sample, with N being total number of sampling points, ∆t is the time sample size. For further

training, in addition to the set without noise, which had 84632 signals, we used 8 sets of

423160 signals (5 different noise realisations). Each set corresponds to one of the following

SNR values: {0, 5, 10, 13, 17, 20, 25, 30} dB. 9 sets of 9403 signals with the corresponding noise

levels were left to validate the network performance. Validation data sets were not used in

the training process. We note that the NFT in optical communications is tailored for use in

long-haul systems, meaning the high levels of noise (low SNR) is most interesting from the

application perspectives. However, we also include the results for high SNR levels to analyse

the NN functioning peculiarities in detail.

Turning to the question of soliton appearance from a localised profile, the rigorous criterion

for our pulse having no embedded solitons can be formulated for single-lobe profiles as [173]:

∞∫︂
−∞

|q(t )|d t <π/2, (4.6)

and the deterministic profiles used in our work have a much higher normalised energy. For

more involved multi-lobe profiles, the soliton-creation threshold is typically higher, but we still

had some profiles that contained solitary components, so we had to eliminate them. When

we add noise to our signal that initially contains no solitons, a random modulation typically

diminishes the probability of solitons appearance [174, 175]. However, we checked out that all

randomly perturbed signals used in our study did not contain a solitonic component as well.

To demonstrate the difference between the continuous NFT spectrum and the linear FT

spectrum, we calculated (taking into account the necessary transformations and frequency

scaling) both spectra for an example signal of the type used in our analysis. As the measure

showing the distinction between the conventional Fourier and NF spectra, we use the norm of

the difference: |r (ξ)−rF T (ξ)|, where rF T (ξ) is given by the first (linear) term in the expansion of

r (ξ), Eq. (1.61). Fig. 4.4a shows an example of a nonlinear and conventional Fourier spectrum.

The dependence of the difference on the spectral parameter ξ for a typical signal from our

testing set is shown in Fig. 4.4b. The critical decrease of the difference at ξ region below −100

and above 100 occurs because the amplitude of the continuous spectrum at that region also

tends to zero. The average maximal difference parameter value over the entire spectrum for

all signals from the test dataset is ≈ 9. This fact allows us to argue that the nonlinear effects

are essential for the selected testing signals, despite their containing no solitons. Thus, the

accuracy of the NFT-Net allows us to perceive the truly nonlinear effects.

In our work we used the conventional forward NFT numerical method to generate training

and testing data set pairs: the signal and its respective NF spectrum. For the computation of

continuous NF spectrum associated with a given profile q(t ) (containing no solitons) having

the form of Eq. (4.1), we used the exponential scheme ES4 from the FNFT package[171] (non-

fast realisation). It has the accuracy proportional to the fourth power of the time sample
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Figure 4.4: (a) Example of the amplitudes of Fourier spectrum (FT) and continuous nonlinear
Fourier spectrum (NS) for one of the training signals. (b) Example of the absolute value of the
difference between Fourier spectrum and continuous nonlinear Fourier spectrum for one of
the training signal. For both graphs signal energy Esignal = 39.0 in non-dimensional units.

size, ∼ (∆t )4. We note that there exists the fast realisation of the NFT processing with ∼ (∆t )4

accuracy[176], which can potentially be used for efficient NFT-Net training.

4.4.3 Neural network design and Bayesian optimisation

As mentioned above, the general NF spectrum attributed to a given localised waveform

consists of two parts: the discrete spectrum that we do not consider in our current study

(our trial pulses do not contain any solitonic component, neither in pure form nor in the

noisy case), and the continuous part which is our subject in hand here. The continuous part

is retrieved through considering the special Jost solutions (1.16) to the ZS problem (1.15).

The goal of our work is to demonstrate the fundamental possibility of replacing the direct

calculation of NF spectrum through the numerical solution of the ZS problem (1.15) with the

computations employing specially-designed and trained NNs.

The latter task can be addressed using the encoder-decoder approach, where the encoder

transforms the input signal into some intermediate vector representation and, later, the

decoder converts this representation into the output signal. We notice that the input and

output signals can belong to two different data domains. There are several advantages of

this approach, e.g. it is quite flexible, so the encoder and decoder structures can differ to

match exactly the “nature” of each signal’s domain. With this, we train such NNs in the end-

to-end style, so the weights of the encoder and decoder will be trained simultaneously and

fit each other. A lot of highly efficient encoder-decoder architectures have been designed

up to date, e.g. those can demonstrate an efficiency higher than that of a human brain for

some specific tasks [177]. For processing quite long sequences (typically more than 1000 data

points), the convolutional NNs (CNN) are often more beneficial than the Recurrent neural

networks (RNNs). Also, the CNN allows us to parallelise the computations in an efficient way,

which is important in our case. Thus, we argue that the encoder-decoder architectures based

on CNNs are most suitable for our data and task, though other NN types may also deserve

investigation in latter studies.
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Figure 4.5: (a) The dependence of the MSEvalue on the number of Bayesian iteration. (b) The
same for minimal value of MSE.

As a starting point, we took the WaveNet [178]-based network, which extends the concept

of deep CNNs. Models of this type have several advantages, among which we underline

the reduction of time required for training the network on long data sequences. However,

a significant drawback of this architecture is the requirement to embed a large number of

convolutional layers to increase the receptive field. In our work, to increase the effective size

of that region, we used convolutions with dilation. This made it possible to exponentially

increase the receptive field with the NN depth growth and, therefore, to capture a larger

number of data points in the input signal. The choice of Convolution Neural networks (CNNs)

for Nonlinear Fourier Transform (NFT) applications over simpler neural network architectures

is primarily motivated by CNNs’ superior ability to capture spatial hierarchies and complex

patterns in data, which are crucial for accurately processing and interpreting signals governed

by the nonlinear Schrödinger equation. This inherent capability makes CNNs particularly well-

suited for tasks that require an understanding of the complex, nonlinear dynamics present in

NFT analyses.

The momentous issue in using NNs to perform any nonlinear transformation is the choice

of the optimal network architecture. One of the optimisation methods is to enumerate the

possible combinations of NN parameters. But even in the case of a relatively small number of

layers, the number of hyperparameters can reach several thousand, which makes the optimi-

sation process very time-consuming, if realisable at all. Thus, the search for an optimisation

algorithm for such computationally expensive problems can be extremely difficult. Rather

than conducting a conventional dimensioning study for NNs, this research adopts Bayesian

Optimization to fine-tune the architecture of the CNN for the NFT-Net. Bayesian Optimization,

recognized for its efficiency in finding the optimal distribution of hyperparameters [179], offers

a principled and efficient method for exploring hyperparameter spaces. This approach strikes

a balance between model complexity and performance, outperforming exhaustive search

methods by utilizing prior evaluations to inform subsequent searches. Through the appli-

cation of Bayesian Optimization, we systematically refined the CNN architecture, achieving

optimal performance for tasks involving the NFT without resorting to traditional dimensioning

studies.

The Bayesian optimization builds a probabilistic model of the function mapping from hy-

perparameter values to the objective evaluated on a validation set [179, 180]. By iteratively
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Figure 4.6: The schematic of NFT-Net topology: the extended scheme presents the sequence of
operations for the processing of real part; the processing of imaginary part is identical (marked
with the long arrow below the scheme). The numbers indicating the layers/arrays sizes refer
to our processing 1024 complex-valued signal samples.

evaluating a promising hyperparameter configuration based on the current model, and then

updating it, the Bayesian optimization aims to gather observations revealing as much infor-

mation as possible about this function and, in particular, the location of the optimum. Thus,

it tries to balance exploration (hyperparameters for which the outcome is most uncertain)

and exploitation (the hyperparameters expected to bring us close to the optimum). An im-

portant aspect to note is that the Bayesian optimisation often does not return one specific

point in the parameter hyperspace for which the optimised function is minimal. The process

converges into some subspace of parameters, where several points can locally minimize the

function [179].

We manipulate the following hyperparameters for the convolutional part of the neural network:

the number of convolutional layers, the number of filters, the kernel size, stride, dilation,

and the activation function for each layer. After the convolutional part, there are 2 fully

connected layers, the second of which has a fixed size (1024, which corresponds to the size

of the output vector). The size and activation function of the first fully connected layer was

also a hyperparameter for optimization. The optimization process included fine-tuning the

number of convolutional layers within a range of 2 to 4, allowing for variability in the depth of

feature extraction. For each convolutional layer, the number of filters was set to span between
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10 to 256, depending on the layer, to diversify the capacity for feature detection. The kernel

size, crucial for defining the scope of input considered at each convolutional step, varied from

1×1 to 20×20, offering flexibility in the granularity of analysis. Stride and dilation parameters,

both adjustable from 1 to 3, were optimized to alter the convolution operation’s coverage and

input sampling methodology, respectively. The architecture also incorporated 1 to 3 dense

layers, with the neuron count in each layer ranging broadly from 128 to 4096, providing a

robust framework for pattern recognition and decision-making. Activation functions – ReLU,

sigmoid, and tanh – were selectively employed across the network to introduce nonlinearity,

enhancing the model’s ability to model complex relationships in the data. This comprehensive

and detailed parameterization ensures a thorough exploration of the model’s architectural

landscape, aiming to identify configurations that yield optimal performance metrics. In

each iteration of Bayesian optimization, we retrain the NN and calculate the MSEloss on

the validation dataset. The architecture of the NN is considered better if it results in a lower

validation loss. Therefore, we select the architecture that achieves the lowest loss value on the

validation dataset.

For the optimisation, we used a dataset without additional noise and employed only the real

part of the continuous spectrum for the prediction. After that, the “optimal” architecture

(but not weights) is fixed, and is no longer changed to predict the imaginary part of the

continuous spectrum or for our operating with the datasets with additional noise. The loss

function was optimised for each architecture. We used the MSEas the loss function, aiming

to minimise the MSE between the network output and the target output computed with the

conventional NFT method [171]. In training, we employed the Adam (Adaptive Moment

Estimation) optimisation algorithm with the learning rate of 1e-4 [181]. The learning process

of each point in the parameter hyperspace was stopped if the value of the loss function did not

decrease over 5000 epochs. We chose this large epoch stopping-criterium number to neutralise

the factor of randomness in the learning process, which appears due to the random choice of

the initial weights. Additionally, we checked the value of the loss function on the validation

set to prevent the overfitting, but for the amount of training data used, the overfitting was

not observed. Figure 4.5 presents the dependence of the MSE value and dependence of its

minimum on the Bayesian iteration number. For architectures with more than 20 million

training parameters, we set the value of the loss function to 1.0: this explains the upper cut-off

limit in the figure. It is apparent from Fig. 4.5 that the optimisation has identified a subspace

where many architectures have approximately the same value of the loss function at the level

of 10−5. However, there was a point where the value was at the level of 10−7. Thus, we took this

point (a set of hyperparameters) as the optimal one. After finding the optimal architecture,

each NN’s weights were trained for different SNR but keeping the same optimal architecture

parameters. On average, with the amount of data used, our learning process took 50 000

epochs to reach the minimum for each noise level.

The original signal and NF data for the continuous spectrum are complex-valued functions.

Therefore, two networks with the same architecture are to be used for the whole transforma-

tion; each identical part is responsible for the computation of either the real or imaginary
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parts of the resulting arrays, which contain the values of continuous NF spectrum defined

in Eq. (1.24). Fig. 4.6 depicts the schematic for the entire optimised NFT-Net architecture. The

convolutional part consists of three layers with 10, 15 and 10 filters. Kernel sizes of the first

and third convolutional layers are 10, and for the layer between them, it is 18. As noted above,

we took the dilation value for each layer as one of the sought hyperparameters. For NFT-Net,

the optimisation gave that the first two layers have dilation 2, stride 1 and “tanh” activation

function, and for the third layer, the dilation is 1 with stride 3 and “ReLu” activation. After the

CNN part we put the flattening layer, not shown in the figure (but affecting the processing

complexity), and two fully-connected layers with 4096 and 1024 neurons. The exemplary

picture of how the designed NN works on one signal is given in Fig. 4.7. In this figure, we

show the results of the NN-based NF spectrum computation for the noiseless case. Already

from this figure, we can notice that the result produced by our NN and that obtained from

conventional NFT routine[171] are very similar.

4.4.4 Studying the NFT-Net performance for computing NF spectra of noisy signals

In this section we analyse the NFT-Net performance and the denoising property of the NN. We

compare the deviations in the obtained nonlinear spectrum calculated with the NFT-Net and

calculated with the conventional NFT applied to the same signal without noise. To quantify

the performance rendered by the NFT-Net application with the performance of conventional

algorithms applied to noisy signals, we use the following metric:

η= 1

S

S∑︂
i=1

〈ηi (ξ)〉ξ, ηi (ξ) = |{rpredicted(ξ)}i − {ractual(ξ)}i |
〈|{ractual(ξ)}i |〉ξ

, (4.7)

where S is the total number of signals in the validation set, 〈·〉ξ denotes the mean over the

spectral interval, {rpredicted(ξ)}i and {ractual(ξ)}i correspond to the value of reflection coefficient

r (ξ) computed for the signal number i at point ξ (we compare the quantities for the validation

data set). The label “predicted” refers to the result produced by the NFT-Net on the noisy

signal, and “actual” marks the r (ξ) value obtained using the conventional NFT algorithm[171]

for the noiseless signal. The relative error η(ξ) is determined at the point ξ, so we use 〈η(ξ)〉ξ
to estimate the overall mean of the error for one signal, and use Eq. (4.7) to evaluate the error

for the entire validation dataset. We stress that the metric was chosen in such a way as to take

into account even the regions where the value of the spectrum is much less than one.

The results of our comparison for r (ξ) computation using different SNR levels for NFT-Net are

presented in Table 4.1, and are arranged as follows. The first column of the table identifies

the SNR value in dB for the validation signals, i.e. the level of noise for the signals which we

analyse. The first row of the table displays the SNR values of noisy signals from the training

set, i.e. it shows the noise level of the signals on which the NFT-Net was trained. We notice

that the case SNR = 30 dB corresponds to almost negligible noise, while for SNR = 0 dB our

noise energy is equal to that of our signal, which signifies a very intensive noisy corruption.

Thus, each column in the table corresponds to the results produced by the NN trained on
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Figure 4.7: Panel (a) shows an exemplary amplitude of a original complex WDM signal q(t)
versus time. Below (panel (c)) is the amplitude for calculated scattering coefficient r (ξ)
associated with the signal from the pane above. The blue line corresponds to the data obtained
using the conventional NFT method, the red line corresponds to the NFT-Net result. The
difference between the scattering coefficients for signal example calculated by these methods
is shown in panel (e). Pane (b): the same plot for complex signal q(t) with the addition
of Gaussian noise. The SNR value used is 5 dB. Plot (d) shows the result of calculating the
continuous spectrum for the noisy signal using the FNFT method (green line) and using the
NFT-Net trained at the same noise level (SNR = 5 dB, red line) and original spectrum (for
noiseless case, blue line). For NFT-Net trained with noise, pane (f ) below shows the difference
between the predicted scattering data for the example of noisy signal and the reflection
coefficient calculated by conventional NFT for that signal without noise.
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the signals with the chosen level of a noisy corruption. The number in each cell shows the

averaged metric value, Eq. (4.7), where for the computation of {rpredicted(ξ)}i we used the NFT-

Net trained on the signals with SNR values shown in the first row and applied to the validation

signals having the SNR values given in the first column. The “Conv. NFT” column shows the

error value for the numerical result of the fast NFT method on the signals with added noise,

where the respective SNR is presented, again, in the first column. The value of metric (4.7)

corresponding to the conventional NFT method applied to noiseless signals is, obviously, zero:

the results provided by the conventional NFT without noise are taken as the true ones. When

the NFT-Net produces a less accurate result compared to the conventional NFT applied to

the noisy signal, the cell is marked with grey shadowing; when the NFT-Net outperforms the

conventional NFT method, i.e. it successfully purifies our signal from noise, the respective cell

is not highlighted (white). Whence, the white area size in each table demonstrates how well

the NFT-Net retrieves the nonlinear spectrum for noise-corrupted signals.

Training SNR level, dB
Conv. NFT w/o noise 30 25 20 17 13 10 5 0

w/o noise 0 8.39e-4 6.52e-3 9.43e-3 1.26e-2 1.61e-2 2.38e-2 3.59e-2 7.43e-2 1.42e-1
30 6.91e-2 5.54e-2 9.56e-3 1.11e-2 1.36e-2 1.68e-2 2.42e-2 3.63e-2 7.49e-2 1.44e-1
25 1.23e-1 9.84e-2 1.40e-2 1.39e-2 1.51e-2 1.78e-2 2.45e-2 3.63e-2 7.47e-2 1.43e-1
20 2.21e-1 1.74e-1 2.53e-2 2.18e-2 1.97e-2 2.08e-2 2.58e-2 3.65e-2 7.40e-2 1.43e-1
17 3.10e-1 2.41e-1 3.96e-2 3.23e-2 2.63e-2 2.53e-2 2.78e-2 3.70e-2 7.31e-2 1.42e-1
13 4.89e-1 3.66e-1 7.74e-2 6.12e-2 4.53e-2 3.97e-2 3.54e-2 3.98e-2 7.06e-2 1.38e-1
10 6.78e-1 4.88e-1 1.29e-1 1.03e-1 7.36e-2 6.23e-2 5.12e-2 4.85e-2 6.87e-2 1.33e-1
5 1.16e+0 7.26e-1 2.73e-1 2.31e-1 1.72e-1 1.43e-1 1.15e-1 9.93e-2 7.98e-2 1.17e-1
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0 2.00e+0 9.48e-1 4.79e-1 4.37e-1 3.60e-1 3.12e-1 2.59e-1 2.29e-1 1.74e-1 1.16e-1

Table 4.1: Comparison of the NFT-Net performance against the conventional NFT in the
computation of coefficient r (ξ). The table presents the results for the optimised NFT-Net
architecture from Fig. 4.6. The values in the cells show the error value (4.7) for each specific
pair of training and validation sets SNR. The gray cells correspond to the cases when the
accuracy of the NFT-Net nonlinear spectrum restoration is lower than that of fast NFT, i.e.
the NN does not denoise the signal well, while the white cells correspond to the cases when
the accuracy of the continuous NF spectrum rendered by the NFT-Net is higher, i.e. the NN
effectively denoises the result.

Table 4.1 shows the error values for the restoration of r (ξ) coefficient (1.24) of a noiseless and

noisy-perturbed signals (4.1), by the NFT-Net architecture given in Fig. 4.6. The first row in the

table corresponds to the noiseless case. It is always marked with grey, which means that the

NN cannot provide any better results than the benchmark ones rendered by the conventional

fast NFT method used to generate the training data.

However, the values of the error for noise-corrupted signals reveal interesting tendencies. It

follows from the table that for the low training noise level (up to 10 dB, columns three through

nine), the NFT-Net error is typically lowest for the noiseless validation dataset (second row).

Thus, the addition of low noise in the training dataset only degrades the NFT-Net restoration

capability, even though this decrease is not significant. This NFT-Net feature can be deemed

as the NN’s being “confused” by the weak noise in its training in the nonlinear transformation

identification. For the most interesting case of high noise, the network works best for samples
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where the SNR value is the same for the validation and training sets. In such cases, the relative

error is about 8-12%, while the error for conventional NFT is at the level of 100-200%. Another

fact is that with decreasing noise (rows from bottom to top) in the validation set, the error value

remains at approximately the same level after the cell corresponding to the same training and

validation noise values. These results confirm that the presented NN architecture is capable of

performing the desired nonlinear transformation, the NFT, and, in addition, it can also work

as an effective denoising element when the noise level becomes non-negligible.

The examples of original and noise-corrupted signals and the corresponding nonlinear con-

tinuous spectra are given in Fig. 4.7, where we used the NFT-Net for the computations. Fig-

ures 4.7b and 4.7d show that when the additional noise distorts the signal, the conventional

numerical algorithms naturally produce the noise-distorted nonlinear spectra. Figs. 4.7e

and 4.7f show the relative error value η(ξ) (4.7) for the continuous spectrum prediction with

NFT-Net for the signal without noise (left) and the signal with noise (right), and the reflection

coefficient computed for the original signal by the conventional NFT (marked as “Conv. NFT”

in the panes’ legends). In Figs. 4.7c, 4.7e, the NFT-Net is trained on the dataset without adding

noise, and in Figs. 4.7d, 4.7f, the NFT-Net is trained on the dataset with additional noise for

SNR = 5 dB. Figs. 4.7c and 4.7d show that in the presence of noise, the fast NFT results begin to

deviate noticeably from the original (noiseless) values, while the NFT-Net tends to denoise the

resulting nonlinear spectrum.

4.4.5 NFT-Net performance for the restoration of NF coefficient b(ξ) attributed to
noisy signals

In addition to the coefficient r , from the optical communications perspective it is instructive

and important to check how the proposed architecture would work to predict the NF coeffi-

cient b, Eq. (1.21). We note that the optical transmission method coined b-modulation [69,

71, 86], where we operate with the modulation of the b-coefficient, has proven to be the most

efficacious technique among different NFDM methods proposed [57, 73]. Moreover, for the

practical case when our signal has a finite extent, the continuous part of the NF spectrum can

be completely described by the b-coefficient only, because the second NF coefficient a(ξ) can

be calculated from b(ξ) profile, see Eq. (1.58) in Methods. Our goal here is to demonstrate that

the same NFT-Net structures can be used for the both r (ξ) and b(ξ) computation, when the

NN is trained on the respective dataset. As the loss function, we now use the MSE build on the

b-coefficient samples, and the MSE is also used as our quality metric in the respective tables:

ηb = 1

S

S∑︂
i=1

〈ηb,i (ξ)〉ξ, ηb,i (ξ) = |{bpredicted(ξ)}i − {bactual(ξ)}i |
〈|{bactual(ξ)}i |〉ξ

. (4.8)

The notations are the same as we used in (4.7): the labels “predicted” and “actual” correspond,

respectively, to the result of the NFT-Net applied to noisy signals and the result produced by

the conventional NFT routine applied to noiseless signals.
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We carried out the analysis of the NFT-Net performance for the restoration of b-coefficient

using the same approach as we did in the previous subsection for r (ξ). Our results for noise

pulses with the different level of noise are summarised in Table 4.2. We checked that the

NFT-Net configurations when applied to the computation and denoising of b(ξ) revealed

the same tendencies for the quality of restoration as we observed in the previous subsection

devoted to the reflection coefficient r (ξ). A similar situation as was observed for coefficient

Training SNR level, dB
Conv. NFT w/o noise 30 25 20 17 13 10 5 0

w/o noise 0 7.12e-3 5.37e-3 5.87e-3 6.49e-3 8.69e-3 1.07e-2 1.20e-2 1.58e-2 1.77e-2
30 1.15e-1 5.83e-2 6.73e-3 6.69e-3 7.16e-3 8.95e-3 1.08e-2 1.20e-2 1.58e-2 1.77e-2
25 2.05e-1 1.02e-1 1.02e-2 8.70e-3 8.48e-3 9.54e-3 1.09e-2 1.21e-2 1.58e-2 1.77e-2
20 3.64e-1 1.75e-1 2.13e-2 1.51e-2 1.18e-2 1.12e-2 1.14e-2 1.23e-2 1.59e-2 1.78e-2
17 5.14e-1 2.38e-1 3.66e-2 2.41e-2 1.59e-2 1.33e-2 1.21e-2 1.26e-2 1.60e-2 1.78e-2
13 8.14e-1 3.44e-1 7.73e-2 4.94e-2 2.64e-2 1.88e-2 1.39e-2 1.36e-2 1.63e-2 1.80e-2
10 1.15e+0 4.41e-1 1.31e-1 8.58e-2 4.21e-2 2.70e-2 1.67e-2 1.51e-2 1.69e-2 1.84e-2
5 2.04e+0 6.22e-1 2.70e-1 1.96e-1 9.95e-2 5.91e-2 2.81e-2 2.18e-2 1.95e-2 1.99e-2
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0 3.60e+0 7.98e-1 4.54e-1 3.68e-1 2.24e-1 1.42e-1 6.34e-2 4.43e-2 2.93e-2 2.43e-2

Table 4.2: Comparison of the NFT-Net performance against the fast conventional NFT in the
computation of coefficient b(ξ). The table presents the results for the NFT-Net architecture
from Fig. 4.6. The values in the cells show the error value (4.8) for each specific pair of training
and validation sets SNR. The grey cells correspond to the cases when the accuracy of the
NFT-Net nonlinear spectrum restoration is lower than that of fast NFT, i.e. the NN does not
denoise the signal well, while the white cells correspond to the cases when the accuracy of the
continuous NF spectrum rendered by the NFT-Net is higher, i.e. the NN effectively denoises
the signal.

r (ξ), remains in this case. The error is minimal for a noiseless validation set. However, this

trend now continues for high noise levels. A similar tendency is observed all over the results:

the values above the diagonal vary slightly. The additional observations when dealing the

b-coefficient are as follows. An interesting difference from the case relevant to r (ξ), is that

the metric value (4.8) in the case of predicting b(ξ) is less, and the grey-shadowed region in

Table 4.1 is larger compared to what we see in Table 4.2 for the b-coefficient. From the results,

it is clear that the prediction accuracy is higher for the b-coefficient. It means that our NN

generally works more accurately for the restoration of coefficient b(ξ) than for r (ξ). This result

can be expected, as the noise-perturbed r (ξ) contains the noisy contributions from both a(ξ)

and b(ξ), while the b-coefficient involves only its noisy contribution, and thus gets corrupted

less. So in the latter case, the NN has to clean off less noise.

Figure 4.8 summarizes the above and shows the calculation errors (4.7) and (4.8) for NFT-Net

architecture. The plot actually visualises the values and tendencies from Tables 4.1 and 4.2.

For both r (ξ) and b(ξ) coefficients, the NN outperforms the fast NFT results when the NFT-Net

gets trained on the data with additional noise.
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Figure 4.8: (a) The dependence of the error parameter η (4.7) for coefficient r (ξ) on the SNR
value of the validation dataset for fast conventional NFT and NFT-Net trained at different
noise levels. (b) The same for the error parameter ηb (4.8) for coefficient b(ξ). The black line
represents the error value for fast NFT applied to noisy signals, and the points below this line
refer to the cases when the NFT-Net outperforms conventional computations. Other lines
show the value of the error in calculating the continuous spectrum using NFT-Net, trained
with different noise levels: green – without additional noise, red – with additional noise with
SNR = 30 dB, violet – at SNR = 20 dB purple – at SNR = 10 dB, blue – at SNR = 0 dB.

4.4.6 Complexity analysis

One of the important metrics in the development of signal processing tools is the complexity of

the processing device, i.e. the number of elementary arithmetic operations that the processing

unit employs to reach its goal. Quite often we need to analyse the interplay between the

complexity and accuracy of the processing unit. Thus, here we perform the complexity

analysis for the NFT-Net.

In our case, we concentrate only on the number of multiplications, since in practical imple-

mentation the computational complexity of addition operations is negligible. The number of

real multiplications needed for the forward propagation of the model, as introduced in [150]

for several types of NN layers, is also used to calculate the computational complexity of the

NFT-Net in this research.

The overall complexity C of the NFT-Net can be presented as the sum of two constituents:

the complexity of densely-connected block Cdense and the complexity of convolutional block

Cconv. For the calculation of Cdense the same formula as in [150] can be used, where we have

ni inputs, n1 neurons in the hidden layers, and no outputs, and the complexity is defined as:

Cdense = n1 · (ni +no), (4.9)

In the case of the convolution layer, we can change the equation given in [150] to measure

the generalised convolutional layer complexity by taking into account the number of filters f
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and kernel size k, as well as the effect of padding p, stride s, and dilation d . The complexity

Cconv, layer for one layer when the input shape is [Li n ,Qi n], is specified as follows:

Cconv, layer = k ·Qi n · f ·
(︃

Li n +2 ·p −d · (k −1)−1

s
+1

)︃
, (4.10)

where Qi n denotes a number of channels, Li n is a length of signal samples sequence. Therefore,

the total complexity of the NFT-Net in terms of real multiplications per output sequence (1024

complex valued points) is:

Cconv = 2 · (Cconv, 1 +Cconv, 2 +Cconv, 3 +Cdense), (4.11)

where the factor 2 in front appears due to the use of two identical NNs to predict the real and

imaginary parts of the continuous NF spectrum. Turning to our optimised architecture, to

process 1024 complex signal samples, the following number of multiplication operations for

the optimised architecture is required:

Cconv = 2 · (10 ·2 ·10 ·1006+18 ·10 ·15 ·972+14 ·15 ·10 ·320+
+3200 ·4096+4096 ·1024) = 41598208. (4.12)

4.5 Conclusion and Discussion

In summary, Machine learning and Neural network are cutting-edge technologies that have

garnered substantial interest in the realm of nonlinear signal processing and optical commu-

nications. The neural network architecture proposed in this study illustrates the initial yet

promising capability of NNs for the intricate task of analyzing and (de)modulating the complex

optical signals prevalent in communication systems. Such advances herald the potential to

enhance current optical communication infrastructures by leveraging intelligent algorithms,

such as digital back-propagation based on Nonlinear Fourier Transform and NN, even without

comprehensive knowledge of the nonlinear phenomena that influence signal quality. Our

research indicates that NNs are not only capable of dissecting the internal structure of optical

signals but also of forging new signal patterns through the use of autoencoders. The applica-

tion of NNs to NFT opens new research frontiers in understanding the inherently nonlinear

properties of signal structures and their evolution.

Our goal in this work was to demonstrate that the NN can be successfully used for performing

the NFT operation, in particular, for computing the profile of continuous NF spectrum. Note

that our interest was not only the computation of the continuous NF spectrum, i.e. the

nonlinear transformation, but the possibility to denoise signal using NNs.

Once again, we emphasize that Bayesian optimization does not always give the "best" set of

parameters. It provides a subspace of hyperparameters in which neural networks with such

parameters are best trained on the available dataset. Due to the fact that neural networks are
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universal approximators, any sufficiently complex architecture can be trained for a specific

task. We can expect that the optimization process can converge endlessly towards increasing

the complexity of the network. However, this is not suitable for our task, where we want to

minimize the complexity of the network while improving the accuracy of the work. Therefore,

we simultaneously limited the number of trainable parameters in the NN during optimization.

In our case, during the optimization process, we found an architecture that gives us the best

metric value (4.7) and we chose it as the desired architecture. Further, the optimization process

could converge to another subspace of hyperparameters, but we stick to the point with the

minimum value of the loss function.

We found that this NN, indeed, can perform the NFT operation and denoise the received NF

spectrum: the denoising effect is pronounced at medium to high noise levels. To achieve this

effect, several realisations of the noise are needed for the neural network to "understand" the

influence of noise on the signal. As expected, denoising is typically best when the training

and testing data noise levels coincide, though we observed some deviations from this rule for

lower noise levels, where the quality of restoration of the NF spectrum also makes a noticeable

contribution in the overall error value. When being trained on different noise levels, the

NFT-Net was still able to produce denoising, thus demonstrating the design’s flexibility. We

have shown that conventional NFT calculation methods give “distorted” results when working

added noise. In fact, the “distorted” results are actually correct, but from the nonlinear

transformation point of view. But from the application’s perspective, we are almost always

interested in the denoised signals to reduce the embedded data corruption level.

Finally, we note that the problem of recovering a few solitons from a given pulse utilizing NN

has been studied in [76, 164, 165, 182]. However, the NN architectures used in these works are

much more simple as far as we need to identify and denoise just several solitonic parameters,

while in our work we recovered 1024 complex numbers representing the continuous NF

spectrum. Here we considered a larger number of solitary modes, where, however, only the

total number of solitons in the pulse was studied. Potentially, it is interesting to combine the

NN developed in our work with the additional module that can deal with soliton parameters

restoration: such a hybrid tool would be able to perform the complete NFT decomposition of

an arbitrary decaying pulse. However, from the position of high-speed optical transmission,

the signal processing involving the continuous NF part is most important. We also anticipate

that our results can find applications in numerous problems that involve the solution of direct

scattering problems where denoising of the profiles is required.

To sum up, we investigated the modelling of the NFT operation associated with the focusing

NLSE, using the NN with a special structure, which we coined the NFT-Net. We considered

here an almost unexplored case dealing with the computation of the continuous part of the

NF spectrum. It was demonstrated that the WaveNet-type NFT-Net structure can satisfactorily

perform the task of the NF spectrum computation, and the best-performing architecture was

obtained by Bayesian hyperparameters optimisation. Moreover, we showed that the same NFT-

Net structure can be used to efficaciously retrieve both the reflection coefficient r (ξ) and the
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scattering coefficient b(ξ). The most practically important feature of the developed NN-based

method is its capability to perform signal denoising. We demonstrated that the NN-based

processing can bring about essential improvements in the quality of NF spectrum restoration

attributed to noise-perturbed time-domain profiles, compared to the conventional high-

accuracy NFT processing method. The advantage in denoising becomes most pronounced at

high noise levels, with the maximum restoration quality typically occurring when the SNR of

the training data is the same as that of the validation dataset. In the end, we demonstrated

that we can compute and denoise the NF b-coefficient with the same NFT-Net architecture,

where the restoration quality follows the same trend as we observed for the recovery of the

r (ξ) coefficient. From the physical application’s perspective, our methods can be useful in

tasks where we are interested in separating the meaningful NF spectrum from the noise:

it directly refers to the optical transmission applications and can be used in many similar

problems. From the mathematical perspective, our work can be reckoned as a step towards

developing artificial intelligence-based tools for the solution of integrable PDEs. We anticipate

that the proposed approach can be extended well beyond optical communications, to signal

processing, fibre Bragg grating design [90, 91] and other applications.
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5 HpCom: A Data Mining and Optimiza-
tion Platform for Optical Communica-
tion

5.1 Introduction

In the rapidly evolving field of optical communication systems, researchers face increasingly

complex problems and large-scale computations. The need for efficient and high-performance

simulation tools is paramount. While there are established simulation methods, there is

currently a gap in the availability of high-performance software tailored to the unique require-

ments of optical communication systems. This work aims to bridge this gap by introducing a

GPU-accelerated framework – High-Performance COMmunication library [183], designed to

enhance simulation capabilities and accelerate innovation in the field.

The use of GPU-based implementations in optical communication system simulations offers

several key advantages over traditional CPU-based methods [184]. One of the primary benefits

is the inherent parallelism in GPU architectures. With thousands of cores capable of handling

multiple operations simultaneously, GPUs are better suited for the parallel computations often

found in optical communication system simulations. This leads to improved performance,

particularly for tasks involving large-scale matrix operations, vector manipulations, or Fourier

transforms.

Scalability is another significant advantage of GPU implementations, as they can be more

easily adapted to handle larger problem sizes or more complex simulations. This flexibility

is crucial for researchers working on cutting-edge optical communication systems, as com-

putational demands continue to grow. Moreover, GPUs are known for their power efficiency

in parallel computations. For large-scale simulations, using GPUs can result in considerable

energy savings compared to CPU-based implementations. This is particularly important when

generating vast amounts of data for machine learning techniques or tackling high-dimensional

optimization problems [185–187].

The accelerated computation offered by GPUs enables researchers to rapidly test hypothe-

ses [188], iterate on designs, and explore a wider range of scenarios in a shorter amount of

time. This results in faster discovery of new insights and innovations, as well as more efficient
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Figure 5.1: Framework architecture for optical communication system simulation, featuring
optimized transceiver (Tx) design, GPU-accelerated SSFM-based channel model (with N spans
of length L), receiver implementation (Rx), and performance metrics evaluation including
BER, EVM, and MI.

use of resources for data analysis, interpretation of results, and further development of novel

techniques.

By filling the current gap in high-performance software for optical communication system

simulations, this GPU-accelerated framework has the potential to transform research in the

field. Its user-friendly design, combined with its powerful capabilities, allows researchers to

focus on their novel tasks rather than being constrained by well-established simulations. This

part provides an in-depth overview of the framework’s architecture, highlighting its benefits

and showcasing its potential for driving new discoveries in optical communication systems.

5.2 Methodology

The proposed framework is built on the TensorFlow 2.x library, with Python as the primary

programming language. It is designed to be compatible with the MATLAB environment

through the pyrun function, enabling seamless integration with existing MATLAB workflows.

The main components of the framework include the transmitter (Tx), the optical channel

model (using SSFM and its higher-order variations), the receiver (Rx), and the metrics evalua-
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tion block (see Fig. 5.1). Besides the aforementioned modules, there are blocks dedicated to

compensation and various signal processing techniques. These encompass chromatic dis-

persion compensation, nonlinear phase equalization, and digital backpropagation. Notably,

within these blocks, users have the liberty to incorporate their own Digital signal processing

(DSP) techniques or even employ Machine learning (ML)-based methods. By default, the

transmitter generates a WDM signal with properties as described below. Once the signal is

formed by the Tx, it is passed to the second block - the channel model, where a Standard

single-mode fiber (SSMF) optical channel is simulated with variable numbers of spans and

an Erbium-Doped Fiber Amplifier (EDFA) scheme. The Rx consists of a matched filter im-

plementation, Chromatic dispersion compensation (CDC), signal demodulation and hard

decision blocks. After processing the received information, it can be used to evaluate desired

performance metrics such as BER, EVM, MI, or any custom metric.

The Schrödinger equation and the Manakov equation (see Eqs. (1.1) and (1.2)) are two widely-

used mathematical models that describe light propagation in single-mode optical fibers,

taking into account dispersion and nonlinearity effects [189]. The Schrödinger equation mod-

els the evolution of the slowly varying optical field envelope, while the generalized Manakov

equation provides a more sophisticated model for light propagation in a two-polarization

optical fiber, including polarization-mode dispersion and nonlinear interactions between po-

larizations [190, 191]. HpCom incorporates both of these models, utilizing a GPU-accelerated

SSFM implementation for the efficient and accurate simulation of optical communication

systems. This forms the core of the framework, ensuring that it can handle complex scenar-

ios and deliver reliable results. Further details on the implementation can be found in the

accompanying framework documentation[183].

By default, our framework employs a classical WDM channel scheme (see Appendix C.1 and

code examples C.3 and C.2) for SSMF with an EDFA [192], and ideal transmitter and receiver.

However, users can easily customize their channel line by adjusting various parameters for

the simulations. For instance, you can explore other types of optical fibers such as TrueWave

Classic[193] (TWC) or Large Effective Area Fiber[194] (LEAF) with corresponding parameters.

Additionally, you can modify signal parameters to use not only WDM with QAM but also other

types of modulations or signals.

5.3 Framework Architecture

High-Performance COMmunication library (HpCom) is structured into several integral mod-

ules, as illustrated at Fig. (5.2). Here’s a simplified summary of the modules and their function-

alities:

channel This module facilitates the establishment of channel parameters such as

the length of each span, dispersion, nonlinearity, etc., and provides GPU-

accelerated simulation of the optical channel.
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Figure 5.2: Schematic representation of the HpCom library architecture showcasing its modu-
lar design for simulating optical communication systems.

signal Engaged in the generation and decoding of Wavelength Division Multiplexing

or Orthogonal Frequency Division Multiplexing signals.

modulation This module is responsible for data modulation, creation of constellations, and

modulation/demodulation with various Quadrature amplitude modulation

formats (16-, 64-, 256-, 1024-QAM).

metrics Metrics module houses optimized functions necessary for computing perfor-

mance metrics such as BER, MI, EVM, Q-factor or any user-defined metrics.

These metrics are essential for evaluating the performance of the communica-

tion system.

plot This supplementary module aids in technical plotting, providing a visual

representation of data and system performance.

decorators An additional utility module. It provides python decorators which can enhance

the functionality or performance of the code.

5.3.1 Channel Module

The channel module in the hpcom framework is pivotal for the simulation of signal propaga-

tion through a fiber optic channel. It primarily relies on the nonlinear Schrödinger equation
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(NLSE) or the Manakov equation to model the propagation dynamics. This module encom-

passes two main functions: full_line_model_wdm and full_line_model_ofdm, which are

designed for WDM and OFDM signal generation and propagation, respectively.

This module contains several other functions, as enumerated below:

get_default_channel_parameters Constructs a dictionary populated with de-

fault channel parameters.

update_channel_parameters Modifies the channel parameters and recal-

culates internal characteristics to mitigate

errors, especially in scenarios where the user

overlooks the necessity of manual recalcula-

tion.

update_channel_parameters_from_json Initializes default channel parameters, then

loads and updates any existing parameters

from a specified JSON file.

create_channel_parameters Generates a dictionary with user-provided

channel parameters and computes additional

values requisite for simulations.

For a comprehensive overview, refer to Appendix C.1. The functions transceiver_line_model
and receiver_model are further discussed in the following subsection.

Functions full_line_model_wdm and full_line_model_ofdm

The function full_line_model_wdm serves as a comprehensive model encompassing signal

generation, propagation, reception, demodulation, and metrics computation. Below is a

description of the primary parameters:

channel A dictionary containing the channel model parameters (see Ap-

pendix C.1 for more details).

wdm A dictionary containing the parameters of the WDM signal (see

Appendix C.1 for more details).

bits (optional) Utilized when a specific bit sequence is to be transmitted.

points (optional) Utilized when predefined points are available1.

channels_type (default:

’all’)

Specifies whether metrics should be computed for all WDM chan-

nels or only the middle channel.

1The points must be scaled in accordance with the average signal power, refer to the scaling subsection.
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verbose (default: 0) Controls the verbosity level of messages, with 0 being minimal

verbosity and higher values displaying more information2.

dbp (default: False) A flag to toggle DBP calculations.

dbp_parameters
(optional)

Defines the parameters for DBP (see Appendix C.1 for more de-

tails).

optimise (default: ’not’) When set to a parameter (’ber_x’, ’evm_x’, ’mi_x’), the function

returns only the value for this parameter. Otherwise, function

returns all available information (see information below).

ft_filter_values_tx
(optional)

The Fourier coefficients corresponding to filter values for the

transmitter are specified through this parameter. In scenarios

where a non-standard filter shape is employed (i.e., a shape di-

vergent from the RRC filter), users have the liberty to define the

Fourier modes of the filter explicitly.

ft_filter_values_rx
(optional)

Fourier coefficients of filter values for the receiver. Same func-

tionality as for ft_filter_values_tx.

The function full_line_model_ofdm adheres to a similar logic as full_line_model_wdm,

with a few distinctions. Specifically, it accepts an ofdm dictionary to cater to the parameters

requisite for OFDM signal processing. Unlike full_line_model_wdm, this function does not

use the channels_type, ft_filter_values_tx, and ft_filter_values_rx parameters.

Both functions can operate in either single or dual polarization mode. In a single polarization

scenario, only the x-polarization is used, while in dual polarization, both x and y polarizations

are employed. The functions returns various metrics such as Bit Error Rate (BER), Q-factor,

Error Vector Magnitude (EVM), and Mutual information (MI), alongside the constellation

points at various stages of the transmission link.

The full_line_model_wdm and full_line_model_ofdm functions return a dictionary of

results when the optimise parameter is set to ’not’. The keys in this dictionary, along with

their descriptions, are provided below:

points_orig The original points at the transmitter.

points_noneq The constellation points at the receiver, post the matched RRC filter-

ing for WDM and post FFT for OFDM, but prior to any equalization.

points The constellation points after chromatic dispersion compensation.

points_shifted The constellation points after chromatic dispersion compensation

and nonlinear phase equalization.

2The current maximum verbosity level is 3, subject to change in future versions.
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points_found The constellation points found after hard-decision.

ber The BER for transmitted points.

q The Q-factor for transmitted points.

evm The EVM for transmitted points.

mi The MI for transmitted points.

If the dbp flag is set to True, indicating that digital backpropagation is to be computed, addi-

tional keys are included in the result dictionary:

points_dbp The constellation points post digital backpropagation.

ber_dbp The BER post digital backpropagation.

q_dbp The Q-factor post digital backpropagation.

evm_dbp The EVM post digital backpropagation.

mi_dbp The MI post digital backpropagation.

This organized return structure allows for a thorough analysis of the constellation at the

receiver at various stages of post-processing, and facilitates the evaluation of the DBP’s impact

on the signal transmission quality metrics.

Functions transceiver_line_model and receiver_model

To accommodate a more flexible tuning of the channel model, two distinct functions are

provided: transceiver_line_model and receiver_model. The former is devoted to the

generation of the WDM signal and its propagation through the link, without receiver com-

ponent, while the latter serves as a receiver for the WDM signal outputted from the fiber

model.

The function transceiver_line_model facilitates the creation and transmission of a WDM

signal through the link, albeit without engaging the receiver functionality. For a comprehensive

understanding of the function’s inputs, refer to the description provided in the preceding

subsection concerning the full_line_model_wdm function.

1 result = transceiver_line_model (channel , wdm , bits=None , points =None ,
verbose =0, dbp=False , ft_filter_values_tx =None)

2 # result contains :
3 # result = {
4 # ’signal ’: [signal_x , signal_y ], # x- and y- polarisations after

propagation

E.Sedov, PhD Thesis, Aston University 2023 100



5.3 Framework Architecture

5 # ’points_orig ’: [ points_x_orig , points_y_orig ], # transmitted points
for x- and y-

6 # ’ft_filter_values ’: [ ft_filter_values_x , ft_filter_values_y ] #
Fourier coefficients for filter used to create WDM signal for x- and y-

7 # }

Listing 5.1: Usage of transceiver_line_model function

The function receiver_model operates as the receiver, taking the WDM signal from the

fiber model’s output. It employs a matched RRC filter to extract the constellation points,

subsequently performing Chromatic dispersion compensation (CDC) and Nonlinear Phase

Equalisation (NPE), followed by metrics computation. Similar to transceiver model, the

input parameters for this function have the same meaning as for full_line_model_wdm, as

detailed in the previous subsection.

1 result = receiver_model (wdm , signal , points_orig , ft_filter_values_rx ,
channels_type =’all ’, verbose =0, optimise =’not ’)

2 # result same as for full_line_model_wdm function

Listing 5.2: Usage of receiver_model function

In the current version of the HpCom package, support is extended exclusively to WDM. How-

ever, forthcoming iterations will encompass support for OFDM, thereby broadening the scope

and applicability of these functions.

5.3.2 Signal Module

The Signal Module encompasses key functionalities pertinent to both Wavelength Division

Multiplexing (WDM) and Orthogonal Frequency Division Multiplexing (OFDM) signal genera-

tion and decoding. For an introductory exposition on WDM and OFDM, the reader is directed

to Section 1.4.

WDM Signal Generation and Demodulation

The principal function for WDM signal generation is given by:

1 signal , info = generate_wdm (wdm , bits=None , points =None , ft_filter_values
=None)

This function orchestrates the signal generation process. Initially, it checks if the bits or

points parameters are provided; if absent, it generates them based on the stipulated parame-

ters in the wdm dictionary, such as average signal power or modulation format. The points
are scaled in accordance with the average signal power (details in the Appendix C.3).

Subsequently, for each wavelength, the function invokes a subroutine generate_wdm_base,

which manages the generation process for a single wavelength within the current bandwidth.
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Figure 5.3: Scheme of WDM generation.

The modulated points (e.g., 16-QAM) are taken, and zeros are interspersed between them

according to the specified upsampling rate. For instance, with an upsampling rate of 1,

every sample corresponds to a constellation point; with a rate of 2, every other sample is a

constellation point, with zeros in between, etc.

The convolution operation, as delineated in Eq. 1.69, is central to this process. Leveraging

the Fourier Transform, the convolution is transmuted into a multiplication operation in

the frequency domain, which is amenable to GPU acceleration. The Fourier spectra of the

upsampled points array and the filter are multiplied. Although a RRC filter is typically utilized,

the implementation accommodates user-defined filter shapes.

This procedure is reiterated for each WDM channel, engendering the complete WDM sig-

nal with a distinct frequency shift for the Fourier spectrum of each channel, as dictated by

the wdm[’channel_spacing’] parameter. The convolution operation is executed via the

following functions, catering to both time and frequency domain signals:

1 def filter_shaper_spectral (spectrum , ft_filter_val ):
2 return tf. signal . ifftshift (tf. signal .ifft(tf. signal . ifftshift ( spectrum *

ft_filter_val )))
3

4 def filter_shaper (signal , ft_filter_val ):
5 spectrum = tf. signal . fftshift (tf. signal .fft( signal ))
6 return filter_shaper_spectral (spectrum , ft_filter_val )

With the WDM signal now generated, decoding the constellation necessitates retracing the

aforementioned steps in reverse order. As delineated in Section 1.4, the application of a

matched filter, as illustrated in Eq. (1.71), is imperative for this process. In the code, this opera-

tion is executed by the function receiver_wdm, which in turn invokes matched_filter_wdm.

The latter essentially performs the following actions: it isolates each WDM channel in the

frequency domain (the channel separation is dictated by the wdm[’channel_spacing’] pa-

rameter), and applies the matched filter to the resultant signal (or spectrum, as reverting

to the time domain is not feasible, thus the truncated spectrum is utilized). This matched

filtering operation employs the previously referenced filter_shaper_spectral function.
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The ultimate output of this process are the decoded constellation points. Note that these

points are identified prior to the hard decision stage, hence, they can be dispersed across the

complex constellation plane.

OFDM Signal Generation and Demodulation

Figure 5.4: Scheme of OFDM signals generating and decoding.

The generation of an OFDM symbol is undertaken by the function generate_ofdm_symbol,

where, based on the provided or generated bits, constellation points are derived. These points

are then subjected to an Inverse Fast Fourier Transform (IFFT) operation to transition from

the frequency domain to the time domain, thereby forming the OFDM symbol. If specified, a

cyclic prefix is appended to this symbol to mitigate inter-symbol interference.

Subsequently, the generate_ofdm_signal function orchestrates the overall generation of

the OFDM signal. It initiates by configuring the average power of the signal, especially in

scenarios involving two polarizations. A loop iterates through each polarization, within which

the bits are either provided or generated anew, followed by the derivation of constellation

points. The generate_ofdm_symbol function is invoked within this loop to generate the

requisite OFDM symbols which are then concatenated to form the complete OFDM signal

for the corresponding polarization. This function mirrors the procedural blueprint of OFDM

signal generation, extending from bit generation to the aggregation of OFDM symbols.

1 signal , info = generate_ofdm_signal (ofdm_init , bits_init =None ,
points_init =None , seed =0)

On the receiving end, the decode_ofdm_symbol function is engaged to demodulate a single

OFDM symbol. It begins by discarding the cyclic prefix, if present, and then conducts a Fast

Fourier Transform (FFT) operation on the OFDM symbol to revert back to the frequency

domain, extracting the constellation points.

The broader demodulation of the entire OFDM signal is managed by the decode_ofdm_signal
function. It dissects the received OFDM signal into individual OFDM symbols, and invokes

decode_ofdm_symbol for each symbol to retrieve the constellation points. The collected

points from all symbols and polarizations are then returned as the output, marking the com-

pletion of the OFDM signal demodulation process.
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Figure 5.5: The left figure displays the total execution time for all steps of the optical channel
simulation with 216 symbols, comparing single CPU core and GPU usage, as a function of
the number of spans (SMF, each span is 80 km). The right figure illustrates the relationship
between execution time for a single CPU core and GPU usage with a fixed number of spans
and varying number of symbols in the simulation.

1 points = decode_ofdm_signal ( ofdm_signal , ofdm)

5.4 Performance Evaluation

To evaluate the framework’s performance, we conducted several tests comparing computation

time between CPU and GPU. The signal used was a two-polarization 64-QAM WDM with

1 km per step and 80 km span. The SSMF fiber parameters were: γ = 1.2 (W· km)−1, D =

16.8 ps/(nm·km), and α = 0.21 dB/km. At the end of each span, optical fiber losses were

compensated using an EDFA with a 4.5 dB noise figure. The benchmark calculations were

performed using an NVIDIA GeForce RTX 3070 with 8GB GDDR6 and a single core of an AMD

Ryzen 9 5900HX with up to 4.6GHz.

The total simulation time consists of four components: the transmitter (Tx) simulation time

TT x , channel simulation time Tchannel , receiver (Rx) simulation time TRx , and metrics evalu-

ation time Tmetr i cs . In the current implementation, Tx, Rx, and metrics calculations utilize

CPU cores, but employ optimized functions to prevent O(n2) computational complexity. For

instance, with 215 symbols, Tx, Rx, and metrics calculations take approximately 200 ms, sig-

nificantly less than the propagation time (1230 ms for GPU and 27000 ms for CPU). Optimal

results are observed when working within the available GPU memory. When the number of

simulation points equals n_symbols ·upsampling = 216 ·24, the overall memory required for

calculations is around 6.5 GB. To perform more precise simulations for multi-channel WDM

signals, one must control the overall number of points or employ more advanced hardware.

Figure 5.5 displays the dependence of total execution time on the number of spans for a
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Figure 5.6: Execution time in milliseconds for various simulation steps as a function of the
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(e.g., BER, EVM, MI) rely on the CPU and are influenced by the number of symbols, depicted
as dashed lines. Propagation, which is performed on either the CPU or GPU, is represented by
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fixed number of symbols (left), and the dependence of total execution time on the number

of symbols with fixed propagation length (right). The graphs indicate that as the number of

spans or symbols increases, the GPU’s speedup factor also grows. For instance, for 216 symbols

and 16 spans, the GPU is 17 times faster.

We also evaluated the system performance for an extreme case, where the total memory

required significantly exceeds the GPU’s capacity. We conducted simulations with 219 symbols

(eight times more memory than the current GPU) and separately assessed the time for each

component of the simulations (Fig. 5.6). The graph demonstrates that the gain is independent

of the propagation length, as expected, and remains approximately 34 times faster on the GPU

compared to the CPU. However, for long propagation lengths (or more steps per span), the

total time saved is substantial, as the GPU completes the simulation in under a minute (53.8

s), while the CPU takes over 30 minutes.

5.5 Example of Data Mining

Our research examines signal transmission in an optical system that includes a model for SMF

with each section being 80 km long. We use WDM, which in this scenarios involves a single

channel and single polarization. The system employs a Root Raised Cosine filter with a roll-off
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factor of 0.1. We transmit signals at a rate of 34 Gbaud (GBd), with channels spaced 75 GHz

apart. The setup has an attenuation coefficient α= 0.2 dB/km, an EDFA noise figure of 4.5 dB

(though some cases do not include additional EDFA noise), a dispersion coefficient D = 16.8

ps/[nm ·km], and a nonlinear coefficient γ= 1.2 [W ·km]−1.

Figures 5.7 and 5.8 provide examples of data generated with HpCom, highlighting how the

BER is calculated for a range of parameters. The fiber length varies from 80 km to 2000 km,

equivalent to 1 to 25 spans. The signal average power ranges from -15 dBm to 15 dBm, in

increments of 0.5 dBm. The left column of the figures shows results without additional EDFA

noise, and the right column includes a 4.5 dB EDFA noise figure. For each parameter set, 216

symbols are simulated. Figure 5.7 presents the scenario for a 16-QAM signal, while Fig. 5.8 is

for a WDM signal using 256-QAM. In both figures, the first and second rows depict the BER’s

dependency on distance and average power. The first row provides a 3D visualization, and the

second row shows a 2D color map projection of the same data. The third row offers another

view of the second row, with white areas indicating where the BER is below 10−6 or above 10−1.

In scenarios without additional noise from the EDFA, displayed in the left column, the BER

is generally better at lower signal powers because nonlinear effects are minimal. In contrast,

the right column, which includes EDFA noise, shows that noise significantly degrades signal

quality, especially at low power levels.

The contrast between Fig. 5.7 and Fig. 5.8 is noticeable. In the case of the higher modulation

format, 256-QAM shown in Fig. 5.8, the range where we have a low BER is much narrower.

Additionally, the third row indicates that, for this higher modulation format, we do not achieve

a BER as low as 10−6.

5.6 Conclusion

The GPU-accelerated framework presents a marked improvement in performance over CPU-

based implementations, especially for larger problem sizes and complex simulations. The

significant speedup achieved with GPU acceleration underscores its wide-ranging benefits

in various aspects of optical communication system simulations, such as advanced research,

high-dimensional optimization problems, swift validation of theoretical concepts, and ad-

justment of simulation parameters. Moreover, the accelerated framework facilitates efficient

data mining, laying the groundwork for machine learning applications and the development

of intelligent systems within the field. This user-friendly, versatile, and powerful framework

empowers researchers to concentrate on innovation, ultimately boosting productivity and

paving the way for groundbreaking discoveries in the realm of optical communication.
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Figure 5.7: 16-QAM. Lenght of the fiber changes from 80 km to 2000 km (from 1 span of fibre
up to 25 spans). Signal average power changes from -15 dBm up to 15 dBm (with step of 0.5
dBm). Left column represents the case where there is no additional EDFA noise, right column -
4.5 dB EDFA noise figure. For each set of parameters there is 216 symbols.
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Figure 5.8: 256-QAM. Lenght of the fiber changes from 80 km to 2000 km (from 1 span of fibre
up to 25 spans). Signal average power changes from -15 dBm up to 15 dBm (with step of 0.5
dBm). Left column represents the case where there is no additional EDFA noise, right column -
4.5 dB EDFA noise figure. For each set of parameters there is 216 symbols.
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6 Data-driven Approach for Nonlinear
Equalisation

6.1 Gradient boosting

6.1.1 Introduction

In the realm of machine learning, decision trees have emerged as a potent tool for both

classification and regression tasks, owing to their intuitive decision-making process and ease

of interpretation. The basic principle behind decision trees is to split the data into subsets

based on the values of input features, thus creating a tree-like model of decisions, as illustrated

in Fig. 6.1. This methodology is highly effective for data mining applications and has been a

subject of extensive research across various disciplines such as statistics, machine learning,

and data mining.

Leaf

Branch

Tree

Figure 6.1: One desicion tree - weak learner.

Decision trees are a class of algorithms employed for both classification and regression tasks.

They have gained popularity due to their ease of interpretation and resemblance to human

decision-making processes [195, 196]. The methodology behind decision trees involves creat-

ing a tree-like model (see Fig. 6.1) of decisions based on the values of input features, which is

particularly effective for data mining applications [196]. One of the notable advancements

in decision tree algorithms came with Ross Quinlan’s development of ID3 and its improved

version C4.5, which extended the capability to handle both categorical and numerical features

through the use of Information Gain Ratio (IGR) (see [197] for information).
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Building upon the foundation laid by decision trees, ensemble learning techniques like Ran-

dom Forest (RF) and Gradient Boosting (GB) have been developed to tackle more complex

problems. Random Forests extend the decision tree concept by constructing a ’forest’ of

decision trees, each trained on a random subset of the data and features. The ensemble’s final

prediction is an aggregation of the predictions from individual trees, significantly reducing

variance compared to a single decision tree, and often achieving higher accuracy.

+ ʎ × + ʎ × + ʎ × + ...

Average prediction

Risidual prediction New risidual prediction

etc

ʎ - Learning rate
value between 0 and 1

Figure 6.2: Gradient boosting scheme

On the other hand, Gradient Boosting takes a sequential approach to ensemble learning.

Unlike Random Forests, which build trees independently, Gradient Boosting iteratively trains

decision trees to correct the errors of their predecessors, as depicted in Fig. 6.2. By minimizing

a loss function through a gradient descent-like optimization, Gradient Boosting gradually

improves the accuracy of its predictions. This iterative correction process enables Gradient

Boosting to adapt more effectively to the data, often outperforming other tree-based ensemble

methods like Random Forests in terms of predictive accuracy [198]. Variants like XGBoost,

LightGBM, and CatBoost have emerged, focusing on enhancing speed and accuracy of this

ensemble technique [199].

Gradient Boosting has garnered attention as a promising equalization technique for optical

communication systems due to its adaptability and capability to model complex input-output

relationships [198–201]. One of its notable advantages is its robustness to overfitting, achieved

through techniques like shrinkage, regularization, and early stopping. Furthermore, the in-

herent parallelizability of Gradient Boosting allows for efficient implementations on modern

hardware architectures, including multi-core CPUs, GPUs, and even FPGAs [202], thus of-

fering low-latency and power-efficient solutions crucial for real-time applications in optical

communication systems.

In this part, we delve into the application of GB as a novel equalization technique in opti-

cal communication systems. We aim to explore its potential to surpass the performance

of traditional equalization methods, focusing on increasing predictive performance while

simultaneously reducing the computational complexity of the equalization process. This

innovative approach positions Gradient Boosting as a promising candidate for equalization

tasks in optical communication systems, opening avenues for future advancements in the

field.
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6.1.2 Regression Trees Foundations

Decision Trees enable the modeling of outcomes based on decision rules inferred from data

attributes. While decision trees can be applied for both classification and regression tasks, this

work focuses on their use in regression, aiming to predict continuous outcomes.

The operation of regression trees relies on mathematical concepts to split the data at each

node in a way that results in subsets with minimized variance. Variance measures the spread

of a dataset’s values. It is defined as:

Var(Y ) = 1

N

N∑︂
i=1

(yi − ȳ)2 (6.1)

where Y is the set of target values, yi is an individual target value, ȳ is the mean of the target

values, and N is the number of data points.

When selecting the best feature to split on at each node, the decision tree algorithm seeks to

maximize the reduction in variance. This is defined as the difference between the variance

before the split and the weighted average variance of the two child nodes after the split:

Varr educti on = Var(parent)−
(︃

Nl e f t

N
Var(left)+ Nr i g ht

N
Var(right)

)︃
(6.2)

Maximizing this reduction ensures that the resulting child nodes are as homogenous as

possible. Mean Squared Error is another measure used to evaluate the performance of a

regression tree, particularly for leaf nodes. It is defined as:

MSE = 1

N

N∑︂
i=1

(yi − ŷ)2 (6.3)

where ŷ is the predicted value for the data points in the leaf node, typically the mean of the

target values of the data points in the node.

1. Start at the Root: The entire dataset is considered at the root node.

2. Feature Selection for Splitting: The algorithm evaluates each possible split across all

features, calculating the variance for the dataset if it were split according to each feature.

The reduction in variance for each potential split is determined by comparing the total

variance before the split with the weighted sum of the variances of the two resulting

subsets. At each node, select the feature that, when split upon, results in child nodes

with the lowest total variance.

3. Splitting the Data: The dataset is split into subsets based on the selected feature’s values,

creating child nodes.

4. Recursive Partitioning: Repeat the feature selection and splitting process recursively

on each child node until stopping criteria are met, such as a maximum tree depth or a
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minimum number of samples in a node.

5. Leaf Nodes and Prediction: Each leaf node represents a numerical value, typically the

mean of the target values in the node. This value is the prediction for new instances that

reach this leaf.

6. Predicting New Instances: To predict a new instance, traverse the tree from the root,

following the branches based on the instance’s features, until a leaf node is reached. The

value of the leaf node is the predicted outcome.

This approach ensures that the tree is constructed in a way that captures the underlying

patterns in the data as efficiently as possible.

6.1.3 Theory of Gradient Boosting

Gradient Boosting (GB) builds a series of weak learners, usually decision trees, and iteratively

refines the model by focusing on the areas where the previous models performed poorly. The

algorithm starts with an initial model, F0(x), which could be as simple as predicting the mean

(for regression) or the majority class (for classification) for all instances in the dataset.

F0(x) = argmin
γ

N∑︂
i=1

L(yi ,γ), (6.4)

where: N is the number of training instances, L is the loss function, yi is the true label of the

i -th instance, γ is a constant.

In classification tasks, the concept of a “majority class,” which denotes the most frequently

occurring class in the dataset, is often employed as the starting point for initializing models in

algorithms like gradient boosting. This initial model, F0(x), uniformly predicts the majority

class for all instances, providing a baseline from which the algorithm can iteratively improve.

However, this approach encounters difficulties in applications like 16-QAM constellation point

prediction, where classes (i.e., constellation points) are nearly equally represented, and thus,

no single class dominates. In such cases, selecting a class at random for F0(x) might serve as

an unbiased alternative, ensuring a simple yet effective starting point for model refinement.

This adaptation underscores the necessity for flexible initial modeling strategies in the face of

varied data distributions, particularly in complex classification scenarios.

The algorithm then enters a loop, for m = 1 to M (where M is the number of boosting rounds),

where in each round it:

1. Computes the pseudo-residuals, which are the gradients of the loss function with respect

to the predicted values of the previous model, Fm−1(x):

E.Sedov, PhD Thesis, Aston University 2023 112



6.1 Gradient boosting

ri m =−
[︃
∂L(yi ,F (xi ))

∂F (xi )

]︃
F (x)=Fm−1(x)

(6.5)

2. Fits a weak learner, hm(x), to the pseudo-residuals, ri m .

3. Computes the optimal step size, αm , that minimizes the loss function when hm(x) is

added to the current model:

αm = argmin
α

N∑︂
i=1

L(yi ,Fm−1(xi )+αhm(xi )) (6.6)

4. Updates the model:

Fm(x) = Fm−1(x)+αmhm(x) (6.7)

The final model is the sum of the initial model and the products of the step sizes and the weak

learners from each round:

FM (x) = F0(x)+
M∑︂

m=1
αmhm(x) (6.8)

Each weak learner, hm(x), is typically a shallow decision tree, and the loss function, L, could

be any differentiable loss function such as Mean Squared Error for regression or Logarithmic

Loss for classification. The step size, αm , helps in controlling the contribution of each weak

learner, aiding in reducing overfitting and improving the model’s generalization capability.

Loss Functions

Loss functions measure the difference between the predicted values and the true values. In

Gradient Boosting, differentiable loss functions are used. The two common ones are Mean

squared error (MSE) (for regression) and Logistic Loss (for binary classification).

The loss function for MSE is given by:

L(y,F (x)) = 1

N

N∑︂
i=1

(yi −F (xi ))2 (6.9)

Taking the derivative with respect to F (xi ), we get:

∂L(y,F (x))

∂F (xi )
=−2(yi −F (xi )) (6.10)
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The loss function for Logistic Loss is given by:

L(y,F (x)) =− 1

N

N∑︂
i=1

[yi log(F (xi ))+ (1− yi ) log(1−F (xi ))] (6.11)

Taking the derivative with respect to F (xi ), we get:

∂L(y,F (x))

∂F (xi )
= F (xi )− yi

F (xi )(1−F (xi ))
(6.12)

In these formulas: N is the number of samples, yi is the true label of the i -th instance, F (xi ) is

the predicted value for the i -th instance.

For MSE, the derivative is straightforward and results in a simple expression involving the dif-

ference between the actual and predicted values. For Logistic Loss, the derivative involves the

quotient rule, and the expression relates the difference between the predicted probability and

the actual label, normalized by the product of the predicted probability and its complement.

Regularization

Regularization is a technique used to prevent overfitting by adding a penalty on the complexity

of the model. In Gradient Boosting, regularization can be achieved through various means:

1. Shrinkage (Learning Rate): A small learning rate (also known as shrinkage) can be

used to reduce the step size at each boosting step, making the boosting process more

conservative.

Fm(x) = Fm−1(x)+ν ·αmhm(x)

where ν is the learning rate, 0 < ν≤ 1.

2. Tree Complexity: The complexity of the individual trees can be controlled by setting a

maximum depth, minimum samples per leaf, or other similar parameters.

3. L1 (Lasso) and L2 (Ridge) Regularization: These regularization terms can be added to

the loss function to penalize the coefficients of the features.

Lregularized(y,F (x)) = L(y,F (x))+λ1
∑︂ |β|+λ2

∑︂
β2

where β are the coefficients of the features, and λ1 and λ2 are the regularization param-

eters.
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6.1.4 Methodology

In this study, we introduce a novel approach to nonlinear equalization in optical commu-

nication systems by employing a GB algorithm based on decision trees. We used an optical

channel model of Standard single-mode fiber (SSMF) with Erbium-Doped Fiber Amplifiers

(EDFAs). The signal format is a 16-quadrature amplitude modulation (16-QAM) WDM with

dual polarization and a symbol rate of 34.4 GBd. The pulse shaping employed a digital Root

Raised Cosine (RRC) filter with a roll-off factor of 0.1. The transmission distance varied be-

tween 10, 15, and 20 spans of 80 km each. The EDFA noise figure was set at 4.5 dB. The average

signal power range was from 1 to 8 dBm, but for training, we used power from 4 dBm to 8dBm.

The signal propagation through the fiber was represented by a generalized Manakov equation

using the GPU-accelerated split-step Fourier method[183]. The fiber parameters included a

wavelength of λ= 1550 nm, a dispersion coefficient of D = 16.8 ps/(nm ·km), and a nonlinear

coefficient of γ= 1.2 W−1 ·km−1.

We generated around 10 million datapoints for each specific average power and propagation

distance. The dataset was then divided into training and test sets, with the test set comprising

1% of the full dataset (about 100,000 points).

In the dataset used for training, the input consists of values of the received points for the

x-polarization, for which we aim to predict the nonlinear shift. To account for the neighboring

points’ influence, we include five values of received points to the right and left of the central

point (neighbors in the sequence of points). Since we utilize two polarizations, we also

incorporate the central point for y-polarization (in the same position in the sequence as for

x-polarization) and its five neighboring points on both the left and right. As a result, a total of

22 complex points serve as input for the GB algorithm. The output represents the nonlinear

shift (a complex number that must be added to accurately shift the point to its original position

in the constellation) for the received point in the x-polarization.

The gradient boosting algorithm was implemented using the XGBoost library[200] with GPU

acceleration. The training process involved a large number of estimators, specifically 200,000,

which were chosen to test the idea of using decision trees but can be significantly reduced for

a particular system. The maximum tree depth did not exceed 20, the learning rate was set to

0.1, and the L2 and L1 regularization parameters were both set to 1.0.

To explore why we limited our analysis to only five neighboring symbols, despite the potential

for dispersion broadening to impact a significantly larger number of symbols (thus, with

nonlinear effects, the effective interaction could extend to dozens or hundreds of symbols), let

us provide some context to support this decision.

Machine learning models, with their capacity to serve as universal approximators, can ex-

tract valuable information from input data for a specific purpose. This introduction sets the

stage for our specific scenario: the presence of neighboring points, which are themselves

influenced by their neighbors. This implies that the nonlinear adjustment of neighbors, even
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with knowledge only of a neighbor’s position at the receiver, can reveal information about

subsequent neighbors and the influence on the target point for which we are calculating a

correction. This forms a complex network where information about a local group of points

contains more insights than initially considered. For instance, the outermost points in our

analysis (the fifth neighbors to the left and right) indirectly incorporate information about

subsequent points in the transmitted sequence. This information is partial but suggests that

each point’s shift due to neighboring influences carries implicit data. Although expanding

the number of neighbor symbols for analysis could potentially enhance model performance,

such an exploration exceeds the scope of this research. However, we emphasize that this is a

compelling and valuable area for future investigation and would be an excellent subject for a

detailed study.

Now, let’s turn our attention to a more quantitative analysis. We will examine how features

(the neighboring points) are utilized in a Gradient Boosting model by employing feature

importance measurement.

Feature importance in gradient boosting models provides insight into the relative significance

of each feature in making predictions. The importance of a feature is often quantified based

on how frequently it is used to split the data across all trees in the ensemble. This metric,

referred to as the "importance" or "weight," reflects the feature’s contribution to the model’s

decision-making process.

Mathematically, we can define the importance of a feature as follows:

I ( fi ) =
∑︁K

k=1 Count( fi ,Tk )∑︁N
j=1

∑︁K
k=1 Count( f j ,Tk )

, (6.13)

where N represents the number of features, K the number of trees (estimators) in the model,

and Count( fi ,Tk ) is the number of times feature fi is used as a split in tree Tk .

This definition implies that the importance of a feature is directly proportional to how often

it is selected for splitting data points in the model’s trees. A higher count indicates a higher

significance of the feature in the model’s predictions. The essence of this metric lies in its

ability to highlight which features the model relies on most heavily to reduce uncertainty or

entropy in the data.

It is essential to note that while this measure provides valuable insights into feature relevance, it

does not convey the direction of the feature’s effect (positive or negative) on the target variable.

In the broader context of model interpretation and feature selection, understanding the

importance of each feature helps in identifying the variables that contribute most significantly

to the predictive power of the model. This knowledge can be crucial for model refinement,

simplification, and for gaining deeper insights into the underlying processes being modeled.

Figure 6.3 presents the feature importance in a GB model trained to predict nonlinear shifts at

an average signal power of 6 dBm for different transmission distances: (a) 800 km, (b) 1200
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Figure 6.3: Feature importance in the trained GB model for predicting nonlinear shifts at an
average signal power of 6 dBm. (a) For a transmission distance of 800 km, (b) 1200 km, and (c)
1600 km. In the feature labels, ‘x’ and ‘y’ denote the polarization of the signal point, whereas
‘plus’ and ‘minus’ indicate the right and left neighbors in the symbol sequence, respectively.
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km, and (c) 1600 km. In the feature labels, ‘x’ and ‘y’ represent the polarization of the signal

point, while ’plus’ and ’minus’ signify the right and left neighbors in the symbol sequence,

respectively. An intriguing observation is that the most influential feature in the decision trees

is not the point for which we predict the correction (‘point_x’), but its counterpart in the other

polarization (‘point_y’). This finding highlights the significant insight that information from

the same position but in a different polarization provides about the required correction.

Further analysis reveals that ‘point_y’ dominates feature usage, significantly more than

‘point_x’, especially over longer distances (for 1600 km, ‘point_y’ accounts for over 30% of usage,

whereas ‘point_x’ is just above 5%). The importance of the immediate neighbors (‘plus_1_y’

and ‘minus_1_y’) is comparable to ‘point_x’, but the relevance of further neighbors declines

with their sequence number. This decline is more pronounced for shorter distances (800 km)

compared to longer ones (1200 and 1600 km), aligning with the expectation that neighbor

influence increases with distance. For instance, at 1600 km, the influence of the furthest

neighbors analyzed is around 2% each, dropping below 1% for 1200 km, and to approximately

0.6% for 800 km.

From these observations, we conclude that the impact of distant neighbors grows with increas-

ing transmission distance, though not dramatically. Including more symbols could enhance

model performance, but the improvement is minimal for short distances and potentially up

to 8% for longer distances under optimal conditions. This increase, while notable, does not

fundamentally alter the model’s overall performance. At a lower average signal power of 3 dBm,

where nonlinear effects are reduced, the impact of distant neighbors is even less significant,

reinforcing the dominant role of ‘point_y’ (Fig. 6.4).

This analysis supports our methodological choice of focusing on five neighboring symbols,

demonstrating its viability even when the actual channel memory extends significantly further.

Our aim was to establish a proof of concept for using the GB model without delving into a

comprehensive study of neighbor influence, highlighting this as a promising direction for

future research.

6.1.5 Complexity

Constructing

The computational complexity of constructing a decision tree depends on the number of

records (N ) and the number of features (M). In a balanced tree scenario, the complexity

is O(M N log N ), accounting for evaluating all features across all records at each level of the

tree down to a depth of log N . In the worst-case, with an unbalanced tree structure, the

complexity can escalate to O(M N 2). This is due to the potential for the tree to degenerate

into a structure with depth N , requiring extensive computations at each level. Introducing

a maximum depth limit (Dmax ) as a stopping criterion alters the complexity. Regardless of

being balanced or unbalanced, the tree cannot exceed this depth, making the construction
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Figure 6.4: Feature importance in the trained GB model for predicting nonlinear shifts at an
average signal power of 3 dBm. (a) For a transmission distance of 800 km, (b) 1200 km, and (c)
1600 km. In the feature labels, ‘x’ and ‘y’ denote the polarization of the signal point, whereas
‘plus’ and ‘minus’ indicate the right and left neighbors in the symbol sequence, respectively.
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complexity O(M N Dmax ). This constraint ensures that the tree’s growth is curtailed, preventing

the exponential increase in computational cost seen in unbounded scenarios.

The computational complexity of Decision Trees varies significantly between the ideal, bal-

anced tree scenario and the worst-case, unbalanced tree. The introduction of a maximum

tree depth as a stopping criterion significantly impacts the computational complexity of De-

cision Trees, both in construction and prediction phases. It provides a practical mechanism

to control the growth of the tree, thereby ensuring that the complexity remains manageable,

especially in scenarios that could otherwise lead to highly unbalanced structures.

In the context of Gradient Boosting, the construction of the ensemble model involves sequen-

tially building T decision trees. Consequently, the computational complexity for training the

ensemble is influenced by the complexities inherent in constructing individual decision trees,

scaled by the number of trees, T . In scenarios where decision trees are balanced, the train-

ing complexity is O(T M N log N ). Conversely, in cases where the trees become unbalanced,

the computational burden escalates, with complexity potentially reaching O(T M N 2). This

increase is attributable to the deeper tree structures that may arise, requiring more extensive

computation at each level. To mitigate such variability and enhance predictability in compu-

tational demands, imposing a maximum depth, D , for each tree normalizes the complexity to

O(T M N D).

Making Predictions

For predictions, a balanced tree allows for traversing from the root to a leaf node in O(log N )

computations, given the tree’s depth corresponds to log N in balanced conditions. In an

unbalanced tree, the depth could approach N , leading to a worst-case prediction complexity

of O(N ) for traversing through all nodes from root to a specific leaf. When a maximum depth

is enforced, the complexity of making a prediction becomes O(Dmax ). This limit ensures that

the prediction time remains constant, relative to the depth constraint, regardless of the tree’s

balance.

Predictive complexity in Gradient Boosting models similarly hinges on the depth of the indi-

vidual decision trees. Under regular conditions, where trees maintain a balanced structure,

the complexity of making predictions for a single instance is O(T log N ), benefiting from the

logarithmic depth of balanced trees. However, in the worst-case scenario, where trees may be

significantly unbalanced, the complexity could deteriorate to O(T N ). To counteract this and

secure a uniform prediction time, enforcing a maximum tree depth, D , aligns the predictive

complexity to O(T D).

The computational complexity for predictions made by the Gradient Boosting algorithm can

be succinctly summarized by the following upper limit:

C (GB) = T ·D, (6.14)
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where T represents the number of trees within the Gradient Boosting model, and D signifies

the maximum depth encountered across all these trees. It’s important to note that in practical

applications, D does not typically surpass a threshold (often around 100). This constraint

helps in managing the computational load during the prediction phase, ensuring that the time

complexity remains within a feasible range, even as the model scales.

This formulation emphasizes the linear relationship between the algorithm’s computational

complexity and both the number of trees and their depth. Such an understanding is crucial

for optimizing the performance and efficiency of Gradient Boosting models in diverse applica-

tions. At first glance, it may appear that the overall complexity for our chosen set of parameters

is excessively high. In this study, our primary goal is not to achieve cutting-edge complexity

but rather to demonstrate the proof-of-concept. However, it is important to emphasize that

each parameter contributing to complexity can be optimized to significantly reduce the overall

complexity. Comprehensive information about feature importance allows us to manage input

parameters (which can be further reduced) and to control the impact of each decision tree,

thereby enabling the removal of unnecessary trees to enhance performance. Moreover, we can

manually regulate the maximum depth of each tree, which, after optimization, can ultimately

yield the desired performance.

6.1.6 Results

To demonstrate the potential of GB, we assessed the performance of various GB models

across a range of propagation distances and diverse input signal average powers. The results

were analyzed in terms of Q-factor improvement and the level of HD-FEC (Hard Decision

Forward Error Correction), which represents a common error correction scheme used in

optical communication systems. The target Bit Error Rate was set at 4%.

For all propagation distances, the GB models showed at least a 1 dB improvement in Q-factor

compared to the system with Chromatic Dispersion Compensation (CDC). Specifically, for

a 1600 km transmission distance (Fig. 6.5c), the model trained on 8 dBm signals exhibited a

1.10 dB improvement in Q-factor for the same test power. The model trained on 7 dBm signals

displayed a 1.19 dB improvement for the same test power, while the model trained on 6 dBm

signals showed a 1.22 dB improvement. The 1.22 dB Q-factor improvement for the 6 dBm

model allowed us to decrease the BER (increase the Q-factor) below (above) the HD-FEC level.

Interestingly, models trained on higher average power (and thus experiencing higher nonlinear

distortions) exhibited good performance when applied to lower test power levels. However,

their performance degraded for higher test power levels. This observation suggests that the GB

algorithm can successfully mitigate nonlinear effects. This is particularly evident in Fig. 6.5a

for a propagation distance of 800 km. The model trained on 8 dBm outperformed other

models for power levels from 5 dBm to 8 dBm, showing approximately 1.6 dB improvement

(specifically, 1.64 dB for 6 dBm test power and 1.61 dB for 8 dBm test power). For 8 dBm, the

improved Q-factor surpassed the HD-FEC level. However, for lower signal powers, the model
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Figure 6.5: Q-Factor performance after nonlinear equalization using GB trained at varying
average signal power levels. Solid lines represent the system with CDC, and horizontal dashed
lines indicate the HD-FEC threshold for a BER of 4%. Total propagation distance of 800 km (a),
1200 km (b) and 1600 km (c).

trained on 8 dBm performed poorly, since these regimes are less influenced by nonlinear

effects.

A similar pattern can be observed in Fig. 6.5b for a propagation distance of 1200 km. In this

case, the model trained on 7 dBm showed significant improvement for a wide range of test

signal powers (from 3 dBm to 8 dBm). This finding indicates that the GB training power can

be optimized for specific power ranges in which the system operates. The wide range of

applicability allows for the development of a universal equalizer based on GB, which does not

require retraining for different power levels (subject to the constraints of the working regime

for GB).
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6.1.7 Discussion

Perspective of Practical Realization

To address the practical aspects of signal equalization, it is crucial to consider the computa-

tional efficiency of the equalization process in real-world implementations. Neural networks

(NNs), for instance, comprise multiple layers involving matrix multiplications, typically result-

ing in computational complexity on the order of O(N 3) for straightforward implementations.

While optimizations such as Strassen’s algorithm can reduce this complexity, the inherent

structure of neural networks, often comprising several layers, significantly increases the oper-

ation count, scaling almost cubically with added complexity. This escalation can range from

thousands of operations for basic Multi-Layer Perceptron (MLP) architectures to millions for

more sophisticated models, which offer improved performance but at a higher computational

cost.

The sequential nature of these operations, a characteristic shared with Digital back-propagation

(DBP) algorithms employing the Split-step Fourier method (SSFM), necessitates waiting for

the completion of previous operations before proceeding. This requirement for shared mem-

ory, where the results of prior computations must be immediately accessible for subsequent

operations, introduces significant challenges for real-time processing.

The Gradient Boosting approach offers a noteworthy advancement in this context. Once

the estimators, or trees, are constructed, they can be utilized independently. This indepen-

dence allows for the parallel computation of results from each tree without interdependencies,

significantly enhancing computational efficiency. Furthermore, the simplicity of GB oper-

ations—requiring only D (the depth of the tree) comparisons for input features to derive

results from each decision tree—eliminates the need for complex computations. Given that

comparison operations are as fast as summations in contemporary systems, the process is

highly efficient. Importantly, the depth of these trees, D , is inherently manageable, often not

exceeding 20 in practical analyses.

With only 20 basic operations, we can process all trees in a Gradient Boosting model. This

efficiency suggests the potential for high-speed performance through parallel processing. An

intriguing research direction is exploring how to manage 200,000 estimators, the current count

in our system, in parallel within real-world platforms like FPGAs. Furthermore, there’s room

to optimize and potentially reduce this number of estimators, which hints at the depth of

investigation required — a fitting challenge for a dedicated Ph.D. project. In this thesis, my

aim was to establish a proof-of-concept for the GB algorithm, demonstrating its viability.

Conclusion

In conclusion, this study highlights the potential of gradient boosting as an innovative equal-

ization technique in optical communication systems. This approach not only offers improved

predictive performance but also holds the promise of simplifying the complexity inherent
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in traditional methods. Such advancements could significantly enhance the efficiency of

contemporary telecommunication networks.

Our initial findings are encouraging, showing that models based on gradient boosting can

achieve a notable improvement in system performance, specifically an increase of 1.1 - 1.6 dB

in the Q-factor compared to systems that only implement Chromatic dispersion compensation

(CDC). This underscores both the practical and theoretical value of the gradient boosting

technique in advancing optical communication technologies.

Looking forward, future research should aim at fine-tuning the balance between complex-

ity and performance, ensuring robustness in real-world applications, and examining the

prospects of hardware acceleration to bring this technique to practical use. The development

of a versatile equalizer using gradient boosting could broaden the scope of its application in

optical communications, promising substantial improvements in the field.

6.2 Neural Networks

In this part of our research, we aim to broaden our methods by demonstrating how neural

networks (NNs) can be applied across various power levels and fiber distances. These findings

represent a potential research direction and offer a glimpse into the practical use of NNs in

optical communications. It’s important to highlight that these results are basic examples of

NN applications.

For our simulations, we used a standard single-mode fiber (SSFM) model with erbium-doped

fiber amplifiers (EDFAs). We transmitted signals using 16-quadrature amplitude modulation

(16-QAM) WDM with dual polarization at a rate of 34 GBd. The signals were shaped using

a digital root-raised cosine (RRC) filter with a roll-off factor of 0.1. We tested transmission

distances of 12 and 15 spans, each span being 80 km long (totaling 960 km and 1200 km,

respectively). The noise figure for the EDFA was set to 4.5 dB. The range for the average

signal power was from −2 to 7 dBm. To model the signal’s propagation through the fiber,

we used the NLSE (1.1) and applied a GPU-accelerated split-step Fourier method[183]. The

fiber’s characteristics included a wavelength of λ= 1550 nm, a dispersion coefficient of D =
16.8 ps/(nm ·km), and a nonlinear coefficient of γ= 1.2 W−1 ·km−1.

We created a large dataset with over four million points (222) for each combination of average

power and propagation distance. This dataset was then split, setting aside 10% (exactly 419,431

points) to test the neural network’s performance.

The neural network is structured as a linear sequence of layers, beginning with a Conv1D layer

that performs a convolution operation with 256 filters of kernel size 20 to detect patterns across

the input sequence, utilizing the “relu” activation function. This is followed by a Bidirectional

LSTM layer with 256 units that processes the data in both forward and reverse directions,

capturing dependencies in the sequence data, and is set to return sequences for full temporal
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resolution. After the LSTM layer, the network employs a Flatten layer to transform the 3D

output to a 2D tensor, suitable for the final layer. The architecture concludes with a Dense

layer that has 2 units. This sequential arrangement allows the model to extract spatial features

through convolution, learn temporal dynamics with LSTM, and finally make predictions.

1 from keras. models import Sequential
2 from keras. layers import Conv1D , Bidirectional , LSTM , Flatten , Dense
3

4 # Define the model
5 model = Sequential ([
6 Conv1D ( filters =256 , kernel_size =20, activation =’relu ’, input_shape

=(42 , 1)),
7 Bidirectional (LSTM (256 , return_sequences =True)),
8 Flatten (),
9 Dense (2, activation =’linear ’)

10 ])

Listing 6.1: Default WDM parameters

The neural network’s (NN) input layer takes in 42 real numbers. These numbers represent

the central data point in a sequence and its 20 neighboring points, with 10 on each side:

(bk−10, . . . ,bk−1,bk ,bk+1, . . . ,bk+10). The NN’s output is two real numbers that combine into

one complex number. This complex number is the estimated correction, or equalization, for

the received point bk in the complex plane. Ideally, this correction ηk should be equal to the

difference between the transmitted and received points, meaning ηk = ck −bk . Therefore,

when we add ηk to bk , we should get the original transmitted symbol ck , where ck is the sent

symbol (a point in the signal constellation), and bk is the point that was actually received.

The NN was trained using the Mean Squared Error (MSE) as the loss function, which measures

the average squared difference between the estimated values and what is estimated. The opti-

mization of the network was performed using the Adam method, an algorithm for first-order

gradient-based optimization of stochastic objective functions, based on adaptive estimates of

lower-order moments with a learning rate of 10−4. The training process ran for 200 epochs on

a Tesla V100 GPU.

In Figure 6.6, we show how the Q-factor, which measures signal quality, changes with different

average signal powers for neural networks (NNs) trained at various power levels. The analysis

begins with a signal power of 1 dBm (top left) and increases to 6 dBm (bottom right), over a

distance of 960 km. Figure 6.7 presents similar data for a distance of 1200 km. In these figures,

the blue line shows the Q-factor after applying Chromatic dispersion compensation (CDC)

and Nonlinear Phase Equalisation (NPE) followed by a hard decision process. The red line

indicates the Q-factor when the NN is tested at the same power level it was trained on. The

green lines show how well the NN, trained at a specific power level, performs when tested at

different power levels. The dashed line marks the 4% Bit Error Rate (BER) threshold, which is

the upper limit for effective Forward error correction.

NNs trained on datasets at -2, -1, 0, and 7 dBm are not included in these graphs because
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Figure 6.6: Representation of dependance of Q-factor vs signal average power for different
NNs trained on different signal power. It starts with 1 dBm (upper left) and subsequently
increment up to 6 dBm (lower right). Propagation distance is 960 km.
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their performance did not exceed that of NNs trained at the same power levels (red line).

Furthermore, the NN trained at 7 dBm did not perform well across the power range, except

precisely at the trained power level.

Figure 6.6 illustrates that neural networks (NNs) can markedly enhance signal quality post-

equalization. In various conditions, NNs have achieved more than a 2 dB improvement in

performance, as seen in Fig. 6.6d for 4 dBm signals. Impressively, they can even push system

performance beyond the forward error correction (FEC) threshold, as depicted for 5 and 6

dBm in Fig. 6.6f.

An additional noteworthy finding is the versatility of NNs across different power levels. For

instance, an NN trained on a 3 dBm signal can effectively improve performance for 1 and 2

dBm test power levels, as shown in Fig. 6.6c. Remarkably, an NN trained on 4 dBm outperforms

an NN trained at the same power for test powers of 2 and 3 dBm, as observed in Fig. 6.6d.

This suggests that NNs can generalize the impact of nonlinearity and accurately predict the

necessary corrections ηk . The significance of this is that NNs are not confined to a single

power level and can be adapted to various system types and operating conditions without a

new training phase.

A future research direction is to implement transfer learning, which is a method where a

model developed for one task is reused as the starting point for a model on a second task. This

approach could broaden the range of scenarios for NN training, enhancing their adaptability

and efficiency.

In Figure 6.7, we see a pattern similar to the one in Figure 6.6. Neural networks (NNs) effec-

tively perform nonlinear equalization, enhancing system performance. For all power levels

examined, NNs managed to raise the Q-factor to levels suitable for forward error correction

(FEC), as shown by surpassing the upper dashed line in Fig. 6.7. However, a noticeable differ-

ence is that NNs specialized for a certain power level generally do not exceed the performance

of NNs trained and tested at the same power level. This implies that with the added complexity

from three extra spans of fiber, our current method needs to be improved to create NNs that

are versatile across various power conditions (although Fig. 6.7e shows promising results

where the green line for 3 and 4 dBm nearly matches the red line).

To conclude, the results presented here are an example of how NNs can be leveraged in

future research. They demonstrate that a data-driven approach can be highly effective when

sufficient data is available. Thanks to the HpCom simulator, data generation for different

types of fibers and power levels is now quicker and easier. These findings will contribute to an

upcoming review article on the application of machine learning in nonlinear equalization,

which is currently in progress and will extend beyond the scope of this thesis.
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Figure 6.7: Representation of dependance of Q-factor vs signal average power for different
NNs trained on different signal power. It starts with 1 dBm (upper left) and subsequently
increment up to 6 dBm (lower right). Propagation distance is 1200 km.
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7 Data Structures Shaped by Nonlinear-
ity

7.1 Introduction

Optical communication channels often exhibit nonlinear effects that can significantly impact

the integrity and recoverability of transmitted signals. Understanding of these effects is

essential for designing robust communication systems capable of maintaining high levels of

performance. With a deterministic model such as the NLSE that closely corresponds with real

systems, we can study this behavior in depth. If we consider that we have precise knowledge

of the final distribution of constellation points at the receiver for any given input at the

transmitter, we can leverage this information to our advantage. As new symbols arrive at the

receiver, we might initially be uncertain about their identity. However, with comprehensive

knowledge about the ultimate distribution of all constellation points, we can ascertain how

likely it is that a new point corresponds to a specific symbol. This approach allows us to

accurately map each new point to the correct constellation symbol, enhancing the accuracy of

the signal interpretation.

In pursuit of a deeper understanding of these effects, we turn to computational simulations.

Specifically, we use a GPU-based simulation package, HpCom [183], which allows us to gener-

ate a large amount of data. By analyzing the internal structure of the received constellation

points, we aim to demonstrate that the nonlinear effects induce distinctive patterns in the data.

These patterns are not merely noise; they hold valuable information about the behavior of the

signal within the fiber. Through detailed analysis, we can begin to reveal these patterns and

improve our ability to predict and mitigate the impact of nonlinearity on our communications,

pushing the boundaries of what’s possible in optical data transmission.

In this study of optical communication systems, we initially ignore Amplified spontaneous

emission (ASE) noise to focus on how signals change due to nonlinear effects alone. This

choice is not by mistake but a planned decision to look closely at how nonlinear effects work

together without noise interference. By considering signal changes as a predictable process

due to nonlinear effects, we can better understand these effects without the randomness of

noise getting in the way.
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We know this approach has its downsides. It’s important to point out that leaving out noise

is a first step in our analysis. Our goal is to clearly see how pure nonlinear effects shape the

signals we receive. This makes our analysis simpler and helps us get to the basics of how

nonlinear effects influence signal changes. This basic understanding is crucial for coming up

with new ideas and algorithms to handle these nonlinearities better. Yet, we accept that this

simplification is just the beginning. The way noise and nonlinear effects interact is important

for a complete picture of optical systems, but this thesis does not cover that.

To sum up, this thesis looks at the predictable nonlinear effects in optical communication

systems. Future studies will build on this work to also include how noise affects these systems.

7.2 Methodology
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Figure 7.1: BER vs Pave [dBm] for studied system. The green line marked with crosses repre-
sents the reference system, including the impact of additional EDFA noise characterized by a
4.5 dB Noise Figure. The blue line illustrates the ideal case, free from ASE noise, which is the
focus of our study.

This study focuses on the analysis of a 16-QAM WDM signal, specifically investigating the

behavior of received constellation points post-CDC and NPE. We employed an optical channel

model of Standard single-mode fiber (SSMF) with Erbium-Doped Fiber Amplifiers (EDFAs).

The signal format under consideration is a 16-QAM WDM with single polarization and a

symbol rate of 34.4 GBd. Pulse shaping was realized using a digital Root Raised Cosine (RRC)

filter with a roll-off factor of 0.1. The total transmission distance spanned 15 links of 80 km

each. The EDFA was assumed to be ideal, introducing no noise. The average signal power

varied from −2 to 8 dBm. Signal propagation through the fiber was modeled by the nonlinear
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Schrödinger equation (NLSE), which was solved using the GPU-accelerated split-step Fourier

method[183]. The fiber’s parameters were set to a wavelength of λ= 1550 nm, a dispersion

coefficient of D = 16.8 ps/nm ·km, and a nonlinear coefficient of γ= 1.2 W−1 ·km−1. For the

study, we generated 224 data points for each specified average power level.

Figure 7.1 illustrates the dependence of the BER on the average signal power for the system

parameters described previously. It depicts two scenarios: one with additional noise from

EDFA and one without. The power range under investigation is selected to align with the

optimal levels for real-world transmission systems. As indicated by the graph (represented by

the green line), the BER reaches its minimum around −1 dBm. It is important to note that, for

the purposes of our study, we utilize data from the channel without EDFA noise. This approach

allows us to specifically examine the impact of nonlinearity without the confounding effects

of random noise.

cl cl+1 cl+2 ...... ......ck-1ck-2 ck ck+1 cp cp+1

triplet

triplet

triplet

bl bl+1bl+2
...... ......bk-1bk-2 bk bk+1 bp bp+1

Figure 7.2: Schematic representation of the “triplet” concept, illustrating the extraction of data
bk corresponding to each transmitted triplet (ck−1,ck ,ck+1).

In this work, we introduce the concept of a “triplet”, which is defined as a set of three con-

secutive points consisting of a left, central, and right point (Fig. 7.2). On the transmitter

side, there is a sequence of transmitted symbols. Unlike real systems where the sequence is

continuous and lacks a definitive beginning or end, our simulation employs a cyclic version:

{c0,c1, . . . ,ck−1,ck ,ck+1, . . . ,cK−1,cK }, where K represents the total number of transmitted sym-

bols. In the continuum of transmitted constellation symbols ck , a triplet is any set of three

points (ck−1,ck ,ck+1) for the transmitted sequence. Similarly, for received symbols bk , we de-

fine a triplet as (bk−1,bk ,bk+1). Our focus is on the distributions of the received symbol bk for

a specific transmitted triplet (ck−1,ck ,ck+1). In essence, we aim to categorize our dataset and

analyze the distributions for bk based on the transmitted symbol and its adjacent neighbors.

In our simulation setup, we maintain a fixed average signal power for the transmitted signal

(we conduct separate analyses for each signal power level, ranging from −2 dBm up to 8 dBm).
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ck → bk 

ck

(ck-1,ck,ck+1)→ bk 

Figure 7.3: Schematic illustration of received symbol distributions based on transmitted
triplets. The blue line represents the distribution of received symbols bk originating from the
transmission of a single symbol ck . The red line shows the modified distribution of bk when
considering the entire transmitted triplet (ck−1,ck ,ck+1).

This setup provides us with complete information, including the sequence of transmitted

symbols {ck } and the sequence of received symbols {bk }. It is important to note that for this

analysis, the received symbols {bk } have already been compensated for dispersion and phase

shift, allowing us to concentrate solely on the deviations in the complex constellation plane

caused by nonlinear interactions.

To analyze the impact of these nonlinear interactions, we examine the distributions of the

received symbols {bk } based on their originating "triplet" (ck−1,ck ,ck+1). This process involves

iteratively selecting indices k corresponding to each specific triplet configuration (for example,

(ck−1,ck ,ck+1) is (1+1j,1+3j,−3−1j) or any other triplet), and gathering all corresponding bk .

For a 16-QAM system, there exist 16×16×16 = 212 potential triplet combinations. With 224

data points in our dataset, this results in approximately 212 data points per triplet, available

for further analysis. Through this method, we create distributions of received symbols D(bk )

for each of the 212 possible triplet combinations, thereby associating each distribution D(bk )

with its respective sent triplet (ck−1,ck ,ck+1).

To simplify the analysis, we normalize the distributions of bk for each triplet by subtracting

the original transmission point ck , shifting all distribution centers towards the origin (0,0).

This adjustment aims to reduce the influence of the original transmission point’s location on

the analysis, allowing us to more clearly observe the shifts in distribution centers caused by

nonlinear effects, which will be further explored in subsequent analysis steps.

Figure 7.3 provides a schematic representation of this process: transmitting ck results in a

distribution of received symbols bk (depicted by the blue line). When we limit the analysis

to received symbols bk that correspond not only to the transmitted symbol ck but to the sent

triplet (ck−1,ck ,ck+1), we observe a modified distribution (indicated by the red line).

The primary model utilized for distribution analysis is the GMM, which will facilitate the

understanding of the underlying structure within the received signal constellations.
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7.2.1 Gaussian Mixture Model and Likelihood

A GMM is a probabilistic model that assumes all the data points are generated from a mixture

of a finite number of Gaussian distributions with unknown parameters. The formula for a

GMM can be written as:

p(x) =
K∑︂

k=1
πkN (x|µk ,Σk ), (7.1)

where x is a data point, K is the number of Gaussian components, πk is the mixing coefficient

for the kth Gaussian component (with the constraint
∑︁K

k=1πk = 1), µk is the mean vector of

the kth Gaussian component,Σk is the covariance matrix of the kth Gaussian component and

N (x|µk ,Σk ) is the Gaussian distribution.

In this study we will use likelihood function to compare different models for the same data.

The model with the higher likelihood (or higher log-likelihood) is generally considered to have

a better fit to the data. For a given statistical model and observed data, the likelihood function

L(θ|x) (where θ represents the parameters of the model and x represents the observed data)

quantifies how well the model with specific parameter values explains the data.

Let’s consider a simple example for likelihood for single one-dimensional Gaussian distribu-

tion. The likelihood function L for a Gaussian distribution gives us a measure of how likely

it is to observe a given set of data points (x1, x2, . . . , xn) given the parameters of the Gaussian

distribution, specifically the mean µ and variance σ2. For a set of independent and identically

distributed observations from a Gaussian distribution, the likelihood function is:

L(x1, x2, . . . , xn |µ,σ2) =
n∏︂

i=1

1⎷
2πσ2

exp

(︃
− (xi −µ)2

2σ2

)︃
(7.2)

The log-likelihood is the natural logarithm of the likelihood function, which turns the product

of probabilities into a sum of log probabilities, making it easier to work with especially for

computations:

logL(x1, x2, . . . , xn |µ,σ2) =
n∑︂

i=1

[︃
−1

2
log(2πσ2)− (xi −µ)2

2σ2

]︃
(7.3)

If we return to two-dimensional case, for GMM (Eq. (7.1)) the log-likelihood is given by:

log p(X|π,µ,Σ) =
N∑︂

n=1
log

(︄
K∑︂

k=1
πkN (xn |µk ,Σk )

)︄
, (7.4)

where single two-dimensional datapoint xn ∈ X and k is the number of corresponding Gaussian

component.

In our scenario, the two-dimensional data points xn correspond to the received symbols {bk }

associated with the selected triplet.
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7.2.2 Model fitting

As previously discussed, within the dataset, we isolate all points bk corresponding to any

particular transmitted triplet (ck−1,ck ,ck+1). For each triplet in the 16-QAM system, this

results in approximately 212 data points. Given the 212 combinations of triplets, we conduct a

comprehensive analysis in the following manner. Initially, we assign to each triplet a unique

identifier (ID) for ease of representation. Several IDs that will be referenced in this text are

listed in Table 7.1: For these triplets, we gather all corresponding points bk and create a

Table 7.1: Triplet unique identifiers (IDs)

Left point Central point Right point identifier (ID)
1+3i 1+3i 3+1i 552
−1−1i 1+1i −1−1i 1285
3+3i 3+3i 3+3i 2730
3−3i 3−3i 1−1i 2993

centered distribution D(bk − ck )ID of bk − ck . Although fitting the distribution is possible

without this centering process, shifting the received points to align with the transmitted points

simplifies the representation and interpretation of the data. Subsequently, we employ the

BRMLtoolbox [203] to fit a GMM distribution to the centered data.

The Expectation-Maximization (EM) algorithm is a powerful iterative method used to find

the maximum likelihood estimates of parameters in statistical models, especially when the

model depends on unobserved latent variables. In the context of GMMs, the EM algorithm is

used to estimate the parameters of the Gaussian distributions (means, variances, and mixture

coefficients) that best fit the data. The EM algorithm for GMMs involves two main steps

repeated iteratively: the Expectation step (E-step) and the Maximization step (M-step) [204,

205].

E-Step

In the E-step, the algorithm estimates the posterior probabilities that a given data point

belongs to each of the Gaussian distributions. This is done using the current estimates of the

parameters. These probabilities are known as “responsibilities” and are calculated based on

Bayes’ theorem.

Given K Gaussian distributions, the responsibility of the k-th distribution for the i -th data

point, xi , is given by:

γ(zi k ) = πkN (xi |µk ,Σk )∑︁K
j=1π j N (xi |µ j ,Σ j )
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where:

• γ(zi k ) is the responsibility of the k-th Gaussian for xi ,

• πk is the mixture coefficient for the k-th Gaussian (the prior probability that a randomly

chosen data point comes from the k-th Gaussian),

• N (xi |µk ,Σk ) is the probability density of xi under the k-th Gaussian distribution with

mean µk and covariance matrix Σk .

M-Step

In the M-step, the algorithm updates the parameters of the Gaussian distributions (means,

covariance matrices, and mixture coefficients) based on the responsibilities computed in the

E-step. The updates are calculated to maximize the expected log-likelihood of the data.

The updated parameters are calculated as follows:

• Updated mean for the k-th Gaussian:

µnew
k = 1

Nk

N∑︂
i=1

γ(zi k )xi

• Updated covariance matrix for the k-th Gaussian:

Σnew
k = 1

Nk

N∑︂
i=1

γ(zi k )(xi −µnew
k )(xi −µnew

k )T

• Updated mixture coefficient for the k-th Gaussian:

πnew
k = Nk

N

where Nk =∑︁N
i=1γ(zi k ) is the effective number of data points assigned to the k-th Gaussian,

and N is the total number of data points.

In the two-dimensional case, each data point xi is a vector in R2, and the covariance matrices

Σk of the Gaussian distributions are 2×2 matrices. The formulas for updating the means, co-

variance matrices, and mixture coefficients remain the same. However, the computation of the

probability density N (xi |µk ,Σk ) for each data point involves the two-dimensional Gaussian

density function, which takes into account the covariance between the two dimensions for

each Gaussian component. This model allows for capturing more complex shapes in the data

distribution by considering the correlations between dimensions, making GMMs a powerful

tool for clustering and density estimation in multivariate data.
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The analysis includes fitting GMM models with a number of Gaussian components ranging

from one to five. For instance, a GMM with two components yields the following properties

from the fitting process:

1. Log-likelihood. Log-likelihood of the data for the particular GMM parameters. The

log-likelihood is given by Eq. (7.4).

2. Mixing coefficients. π1 and π2 are the mixing coefficient for the first and second Gaus-

sian components respectively (π1 +π2 = 1).

3. Mean Vectors. For the first and second Gaussian component:

µ1 =
(︄
µ1,1

µ2,1

)︄
and µ2 =

(︄
µ1,2

µ2,2

)︄
.

4. Covariance Matrices. For the first and second Gaussian component:

Σ1 =
(︄
σ11,1 σ12,1

σ21,1 σ22,1

)︄
and Σ2 =

(︄
σ11,2 σ12,2

σ21,2 σ22,2

)︄
.

5. Eigenvalues. The eigenvalues of the covariance matrices could be obtained by solving

the characteristic equation det(Σ−λI ) = 0, where I is the identity matrix. For the first

and second Gaussian components, the eigenvalues could be represented as follows:

λ1 =
(︄
λ1,1

λ2,1

)︄
and λ2 =

(︄
λ1,2

λ2,2

)︄
.

For other numbers of Gaussian components, the data is processed in a similar manner. All

fitting results are stored for further analysis and are accessible from my GitHub repository or

via email. Detailed information and data sets can be obtained through the following repository

link or by contacting me directly1. In the subsequent section, specific results and insights

gleaned from the data will be presented.

7.3 Results

After the comprehensive data collection and fitting of distributions for all conceivable triplets,

we begin our discussion with visual illustrations.

Figures 7.4 and 7.5 depict the distributions of the received constellation points bk , centered

with respect to the transmitted symbol ck (after CDC and NPE). Essentially, these figures rep-

resent the received symbols after subtracting the original transmitted symbol, corresponding

to specific “triplets”. Figure 7.4 presents the distribution for triplet 552, whereas Figure 7.5

1GitHub Repository: https://github.com/esf0. Email: egor.sedoff@gmail.com
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Figure 7.4: The distributions of the received constellation points bk , centered with respect
to the transmitted symbol ck for triplet 552 [1+3i,1+3i,3+1i]. The first column illustrates
the distribution of simulation data for a real communication system. The second column
represents the distribution fitted with a single two-dimensional Gaussian distribution, while
the third column visualizes a mixture of two Gaussians.
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Figure 7.5: The distributions of the received constellation points bk , centered with respect
to the transmitted symbol ck for triplet 2730 [3+3i,3+3i,3+3i]. The first column illustrates
the distribution of simulation data for a real communication system. The second column
represents the distribution fitted with a single two-dimensional Gaussian distribution, while
the third column visualizes a mixture of two Gaussians.
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displays the distribution for triplet 2730. Notably, these distributions arise from nonlinear

effects during the propagation of the WDM signal through the optical fiber, as the system

excludes additional noise from EDFA amplifiers.

Both Figures 7.4 and 7.5 are structured as follows: rows correspond to different average signal

power levels (first row at −2 dBm, second at 0 dBm, third at 4 dBm, and fourth at 8 dBm). The

first column illustrates the distribution of simulation data for a real communication system

with the aforementioned parameters. These distributions are then fitted with a GMM, and the

derived parameters are used to generate the visualizations in the second and third columns.

The second column represents the distribution fitted with a single two-dimensional Gaussian

distribution, while the third column visualizes a mixture of two Gaussians, each column

containing 100000 randomly generated points.

Examining Figure 7.4, at low average signal power, the GMMs with one and two components

appear similar; however, the distribution for a single-component GMM is broader, indicating

discernible differences. At 0 dBm average power, the distinction remains, though both dis-

tributions seem to fit the simulation reasonably well. The disparity becomes more visible at

higher power levels, where the two-component GMM notably deviates from a Gaussian shape.

A comparable behaviour we can see for triplet 2730 in Figure 7.5. At lower average signal

powers, the distributions vary but are distinct. A striking example is at the highest power level

(last row), where both the simulation distribution and the GMM with two components form

a distinctive shape of a German pretzel. It is evident that a single-component GMM fails to

accurately represent this distribution.

These figures are merely exemplars out of 4096 different triplet distributions, yet they offer

a compelling demonstration that the internal structure of distributions can be intricate and

extend well beyond simple Gaussian forms.

Having observed that the shape of distributions for certain triplets can markedly differ when

using single or multi-component GMM, we now proceed to compare the likelihoods of these

distributions. To this end, we employ the log-likelihood measure described in the previous

section (see Eq. (7.4)) to test the hypothesis that our simulation distribution corresponds to a

specific GMM. Figure 7.6 presents violin plots2 that illustrate the log-likelihood distribution for

different average signal powers and numbers of components in the GMM. The x-axis of each

plot denotes the number of components in the GMM, while the y-axis shows the distribution

of log-likelihood values across all possible triplets. This visualization method is particularly

useful given the 212 possible triplet combinations, which would be exceedingly challenging

to depict using line plots (as demonstrated in Fig. 7.8). The average power in the graphs on

Fig. 7.6 ranges from -2 dBm (upper left) to 8 dBm (lower right).

2A violin plot is a method of plotting numeric data and can be understood as a combination of a box plot and a
kernel density plot. It includes a marker for the median of the data and a box indicating the interquartile range, as
seen in standard box plots, overlaid with a kernel density estimation.
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Figure 7.6: Violin plot of log-likelihood for triplet distribution for different number of com-
ponents in GMM. (a) Pave = −2 [dBm], (b) Pave = 0 [dBm], (c) Pave = 2 [dBm], (d) Pave = 4
[dBm], (e) Pave = 6 [dBm], (f ) Pave = 8 [dBm]
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Figure 7.7: Violin plot of log-likelihood dependence for triplet distribution on average signal
power for different number of components in GMM. One Gaussian in the mixture (left) and
mixture of two Gaussians (right).

Regardless of the log-likelihood values, all graphs consistently reveal that the likelihood for

a single-component GMM is significantly lower compared to a GMM with 2, 3, 4, or 5 com-

ponents, which all exhibit approximately the same log-likelihood values. This pattern holds

across all levels of average signal power. However, what varies with the power is the actual

value of the log-likelihood. The principal finding, however, is as follows: the likelihood that

our experimental data are drawn from a single-component GMM is exceedingly low compared

to that from a multi-component GMM. This observation aligns with our earlier discussions: a

standard Gaussian distribution does not adequately fit the experimental data, necessitating

the use of a more complex model comprising multiple Gaussian components.

Figure 7.7 presents a violin plot of the log-likelihood for triplets across various power levels,

contrasting a mixture with one component (left panel) against two components (right panel).

In both instances, the average log-likelihood value decreases as the power increases, suggest-

ing the potential for more intricate structural characteristics within the distribution. Notably,

even at higher power levels, the two-component GMM provides a markedly superior fit to the

experimental data; for instance, at 8 dBm, the average log-likelihood value for a single compo-

nent is approximately −50000, whereas for two components it is around −16000. Although

these values alone do not conclusively indicate that the experimental data correspond to a

particular type of distribution, they do offer insights that a more suitable model might exist

to describe such distributions. Furthermore, as illustrated in Fig. 7.6, the decline in average

log-likelihood is consistent and nearly linear with increasing average power. This observation,

coupled with insights from Fig. 7.7, indicates that adding more components to the mixture

does not enhance the likelihood significantly. Therefore, for our simulations, a two-component

mixture is deemed sufficient for an initial approximation of data representation.

Figures 7.8 and 7.9 offer a different view of the same data depicted by the violin plots in

Figures 7.7 and 7.6, focusing on specific triplets. This perspective is valuable because violin
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Figure 7.8: Log-likelihood dependence for triplet distribution for different number of com-
ponents in GMM. Graph shows triplets with ID 2730 [3 + 3i,3 + 3i,3 + 3i] and ID 1285
[−1−1i,1+1i,−1−1i)].

plots can obscure the behavior of log-likelihood for individual triplets. These figures confirm a

consistent finding: there is a substantial difference in the log-likelihood values between the

single Gaussian model and a mixture of several Gaussians. The log-likelihood stabilizes with

an increasing number of components in the GMM, indicating that a mixture of two Gaussians

is typically adequate. The same trend is observed with the log-likelihood’s response to signal

power: it decreases linearly as the average power increases. Additionally, for a GMM with two

components, the lines representing different triplets do not cross, affirming the consistency of

this pattern.

7.4 Discussion

In digital communications understanding the impact of nonlinear effects is crucial for im-

proving signal integrity and system performance. This research delves into the analysis of

these effects through the lens of Gaussian Mixture Model, focusing on a constrained set of

data points – triplets – to manage computational complexity and provide meaningful insights

into the behavior of the system under nonlinear influences.

7.4.1 Computational Feasibility

Given the constraints of high-speed data generation tools, both time and storage space are

limiting factors in our research. The choice to analyze triplets, resulting in 212 possible com-

binations from a 16-QAM constellation, allows for a manageable dataset of 224 data points,

ensuring an average of 212 points per combination for robust analysis. Expanding the neighbor-

hood analysis to include pairs, thereby increasing the combinations to 220, would necessitate

232 data points – a 256-fold increase – rendering the analysis impractical with current re-

sources. For instance, fitting a GMM to one power level of 4096 triplets took approximately
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Figure 7.9: Dependence of log-likelihood for triplet distribution on average signal power for
different number of components in GMM. Graph shows triplets with ID 2730 [3+3i,3+3i,3+3i],
ID 1285 [−1−1i,1+1i,−1−1i], ID 2993 [3−3i,3−3i,1−1i] and ID 552 [1+3i,1+3i,3+1i].

two hours on a standard workstation; extending this to five-point combinations would extend

the analysis time to an impractical duration, approximately one month for a single power

level, highlighting a significant gap in computational efficiency that is beyond the scope of

this study.

7.4.2 Approach

The study of neighbor influences within signal transmission represents an iterative evolution

in understanding how information is transformed and perceived. Initially, the focus was on

the direct transformation of a transmitted point through signal propagation to its received

counterpart, leading to rigid decision boundaries devoid of contextual data. Subsequently,

the exploration expanded to include neighboring symbols at the receiver, aiming to enhance

equalization accuracy through this supplementary information. For instance, as discussed in

Section 6.1, the gradient boosting approach leverages data about received points and their

neighbors to infer the original transmitted point.

Progressing beyond this, our research introduces an alternative perspective by examining the

impact of sending sequence neighbors (rather than those received) on the configuration of

received points. This method does not specify the propagation distance; instead, it investigates

how neighboring points from the transmitter influence the received signal. The core objective

of this work is to demonstrate how varying combinations of triplets lead to unique structures

in the received points, driven by nonlinear effects. This phenomenon is attributed to the

complex interplay within the nonlinear system, where the subsequent neighbors’ influence is
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also embedded in the resulting distribution. By increasing the dataset size, we can generalize

the effect of different sequences of subsequent neighbors, providing a clearer understanding

of the distribution patterns that emerge. This approach not only deepens our comprehension

of signal propagation dynamics but also lays the groundwork for future enhancements in

signal processing techniques.

7.4.3 Future Directions

In this phase of our analysis, the focus is intentionally not placed on the neighbors at the re-

ceiver, as the primary objective is to lay the groundwork for developing a message passing (MP)

algorithm. This algorithm is envisaged to adopt a comprehensive approach by incorporating

information about neighboring points, thereby facilitating more informed decision-making

regarding the received points based on the sequence of neighbors. The algorithm will dy-

namically determine the optimal number of neighbors to consider, a parameter that will be

fine-tuned in future studies to enhance performance. Utilizing the distribution information

for triplets, the MP algorithm aims to refine solution accuracy. While the potential exists to

extend this analysis to more complex structures involving five or more points, the current

focus on triplets and their probability distributions is deemed sufficient for significantly im-

proving decoding performance. Consequently, there is no immediate requirement to analyze

longer initial sequences; this research marks a preliminary step towards the development of a

sophisticated algorithm.

7.4.4 Conclusion

In summary, this research marks a pioneering step towards understanding how nonlinear-

ities influence signal structures in 16-QAM systems, revealing that these structures deviate

significantly from Gaussian models. Our investigation underscores the complexity inherent in

the distribution of received signals, where Gaussian Mixture Model enhance fit but reach a

saturation point in effectiveness with additional components. While the validation of these

findings through error rate calculations has not been undertaken within the scope of this

thesis, it forms a critical component of our ongoing research agenda.

Future directions will explore beyond the GMM to discover if alternative or more intricate

models could more accurately capture the nuances of signal distributions. The immediate

next step involves developing an algorithm that utilizes the GMM framework to predict the

distribution category of received signals. By calculating the likelihood across different models,

we can identify the most fitting distribution for a given signal point. Integrating message pass-

ing algorithms could further refine this prediction process, offering a robust tool for decoding

signal distributions. Preliminary work is already underway, with the aim of substantiating the

practical benefits of the proposed GMM configuration through rigorous error rate analysis in

future publications.
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Moreover, the analytical insights into signal distribution patterns hold promise for channel

monitoring applications. Notably, discrepancies from anticipated distributions may signal

underlying system issues, providing a novel diagnostic approach to maintain the operational

integrity of optical communication networks.

Expanding this analysis to encompass various modulation formats and system configurations

represents an exciting avenue for further research. The use of the HpCom [183] package will

be instrumental in generating relevant statistics, facilitating a broad-based exploration of

optical communication systems. Embracing these avenues for future investigation will not

only deepen our understanding of the dynamics within optical communication systems but

also contribute to enhancing their efficiency and reliability.
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8 Conclusion and Outlook

This thesis aims to create new techniques which can be used to improve optical commu-

nication systems, vital for global connectivity, in the face of increasing data demands from

technologies like 5G/6G and cloud computing. It particularly focuses on enhancing Nonlinear

Fourier Transform (NFT) techniques and incorporating machine learning to optimize these

systems.

A significant contribution is the development of a novel method for applying NFT to con-

tinuous signals, using Chromatic dispersion compensation (CDC) for pre-processing. This

approach surpassed traditional Digital back-propagation (DBP) methods in single and dual

polarization signal processing. The research further explores the presence of solitons in WDM

and OFDM symbols, finding that soliton components carry a majority of the signal energy.

A breakthrough in this work is the use of Neural networks (NNs) for forward and inverse NFT,

which showed promising results, especially in noisy signal environments where standard

NFT methods falter. This innovative use of NNs demonstrates their potential in addressing

nonlinearity issues in optical channels, suggesting that NFT could be a key to unlocking greater

channel capacities and enhancing the performance of optical communication systems.

In the second part of the research, machine learning algorithms are explored for their utility in

enhancing optical communication systems. The introduction of High-Performance COMmu-

nication library (HpCom), a GPU-accelerated framework, marks a significant advancement,

enabling efficient simulations of diverse optical fiber channels. This tool aids in data collection

for further investigation, with examples and results included for reference.

Gradient Boosting (GB) is highlighted as an effective method for addressing the nonlinearity

in optical channels, indicating its potential for broader application. Similarly, the adaptability

and efficacy of NNs are demonstrated across various channel and signal parameters, affirming

their role in system optimization.

A novel data-driven approach is applied to reveal intricate structures within received symbol

constellations, a direct consequence of fiber nonlinearity. This discovery of non-Gaussian
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patterns across different signal point groupings adds a new dimension to the understanding

of optical fiber communication.

Overall, the integration of machine learning into optical communication presents a leap

forward in both theory and practical application, promising to influence future technological

developments in the industry.
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A Appendix to Part I: Nonlinear Fourier
Transform

A.1 Methods for numerical calculations

A.1.1 Boffetta-Osborne method for determining scattering data

This method was proposed in 1992 by Boffetta and Osborne and described in detail in their

work [206]. The main idea of the method is that the ZS system can be rewritten as:{︄
∂tψ1 =−ξψ1 +qψ2

∂tψ2 =σq∗ψ1 +ξψ2
(A.1)

which, after passing to a discrete grid for t variable, gives an evolution of the spectral eigen-

functionΨ on each interval ∆t :

Ψ(tn +∆t ) =U (qn)Ψ(tn) (A.2)

where U (qn ,∆t ) is represented as an exponential function of the matrix Q(ξ):

U (q) = exp[∆tQ(ξ)] = exp

(︄
∆t

(︄
−iξ q

σq∗ iξ

)︄)︄
(A.3)

If we expand the above exponent into a Taylor series and sum up the matrices, and then,

assuming that each element of the matrix is a Taylor series, we summarize these rows for each

element, then we get the following expression for the propagator:

U (q) = exp[∆tQ(ξ)] =

=
(︄

cosh(k∆x)− iξ
k sinh(k∆x) q

k sinh(k∆x)
σq∗

k sinh(k∆x) cosh(k∆x)+ iξ
k sinh(k∆x)

)︄
(A.4)

where k2 =σ|q|2 −ξ2 is a constant on the interval ∆t . Using the above method, we can solve

the scattering problem — determine the coefficients a(ξ) and b(ξ). However, for a discrete
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spectrum, this is not sufficient: since the coefficient a(ξ) is zero, it is necessary to calculate its

derivative a′(ξn) = ∂a(ξ)
∂ξ |ξ=ξn . Now we introduce a four-component field containing both the

vector functionΨ and its derivative with respect to ξ:

Ξ(t ,ξ) =
(︄
Ψ

Ψ′

)︄
(A.5)

whereΨ′ = ∂Ψ/∂ξ. Similar to the expressions (A.3) and (A.4) for the Ξ field, one can write a

recursive relation by differentiating the expression (A.2):

Ξ(tn +∆t ) = T (qn)Ξ(tn) (A.6)

here

T (qn) =
(︄

U (qn) 0

U ′(qn) U (qn)

)︄
(A.7)

4×4 matrix, U ′(qn) = ∂U (qn)/∂ξ and can be written as:

U ′
11 = i∆t

ξ2

k2 cosh(k∆t )−
(︃
ξ∆t + i + i

ξ2

k2

)︃
sinh(k∆t )

k

U ′
12 =−qξ

k2

(︃
∆t cosh(k∆t )− sinh(k∆t )

k

)︃
U ′

21 =−σqξ

k2

(︃
∆t cosh(k∆t )− sinh(k∆t )

k

)︃
U ′

22 =−i∆t
ξ2

k2 cosh(k∆t )−
(︃
ξ∆t − i − i

ξ2

k2

)︃
sinh(k∆t )

k
(A.8)

For the numerical calculation, we consider the initial potential of q(t ,0) on the M+1 segments,

assuming that

q(t ,0) = qn when t ∈
(︃

tn − ∆t

2
; tn + ∆t

2

]︃
. (A.9)

In this case, the discrete solution of the scattering problem is the following:

Ξ(tn) =
−M/2∏︂
j=n−1

T (q j )Ξ(t−M/2). (A.10)

To obtain the scattering data, it is necessary to calculate the scattering matrix S

S(ξ) =
−M/2∏︂

j=M/2−1
T (q j ) =

(︄
Σ(ξ) 0

Σ
′
(ξ) Σ(ξ)

)︄
, (A.11)

where matrix Σ is defined as

Σ=
−M/2∏︂

j=M/2−1
U (q j ), Σ

′ = ∂Σ/∂ξ. (A.12)
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Initially, in the problem (1.15), the vector functionΨ extended from −∞ to +∞. In numerical

simulation, this interval is replaced by the interval from −T
2 to +T

2 . In this case, we get the

following result:

a(ξ) = S11(ξ)e iξT ,

b(ξ) = S21(ξ),
∂a(ξ)

∂ξ
= [S31 + i

T

2
(S11 +S33)]e iξT ,

∂b(ξ)

∂ξ
= S41 + i

T

2
(S43 −S21). (A.13)

This method allows us to find all the scattering data for an arbitrary ξ. Although the method

does not directly calculate the spectrum of the problem (1.15), it can help us find it, because

we know that at the points of the discrete spectrum on the complex plane the scattering

coefficient a(ξ) ≡ 0.

It should be noted that for t ≪ 1 the matrix U (q) A.4 reduces to

U (q) ≈
(︄

1− iξ∆t q∆t

σq∗∆t 1+ iξ∆t

)︄
. (A.14)

This form was found by Ablowitz and Ladik [207, 208] and can also be used to solve the

Zakharov-Shabat problem.

A.1.2 Töplitz inner bordering method

The formation of technologies for creating Fiber Bragg Gratings (FBGs) [209, 210] was accom-

panied by the development of numerical methods for their modeling and analysis. Recovery

of the refractive index from a given dependence of the scattering coefficient on the frequency

is the inverse scattering problem, which is solved in mathematical physics using a pair of

Gelfand-Levitan-Marchenko [53] equations.

The work [211] was proposed a method for solving the GLM equations (1.33) and (1.34). It

consists in the fact that the GLM equations can be reduced to equations with the Toeplitz

kernel by replacing u(t , x) = A1(t , t −x) and v(t , y) =−A∗
2 (t , y − t ):

u(t , x)+
∫︂ 2t

x
Ω∗(y −x)v(t , y)d y = 0

v(t , y)+
∫︂ y

0
Ω(y −x)u(t , x)d x +Ω(y) = 0 (A.15)

whereΩ=Ωsol +Ωr ad =∑︁
n cne−iξn x + 1

2π

∫︁ +∞
−∞ dξr (ξ)e−iξx — integral kernel, the parameters

x and y are in the range 0 ≤ x,y < 2t , the variable t is in the range 0 ≤ t < T , and the signal is

restored using the formula q(t ) = 2v(t ,2t −0).
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Further, the equations (A.15) are discretized on a uniform grid, and the integrals are repre-

sented as sums. The resulting equations have a block structure and are written in matrix

form:

G

(︄
u

v

)︄
=

(︄
a

b

)︄
(A.16)

where matrix G and vectors u, v, a and b are defined by:

G =
(︄

E ±Ω†

Ω E

)︄
, Ω= h

⎛⎜⎜⎜⎜⎝
1
2Ω0 0 . . . 0

Ω1
1
2Ω0 . . . 0

. . .

Ωm−1 Ωm−2 . . . 1
2Ω0

⎞⎟⎟⎟⎟⎠
a =±h

2
v (m)

m ρ∗̃,b =−
(︃
1+ h

2
u(m)

1 ρ

)︃
,

ρ =

⎛⎜⎜⎝
Ω1

...

Ωm

⎞⎟⎟⎠ ,u =

⎛⎜⎜⎝
u(m)

1
...

u(m)
m

⎞⎟⎟⎠ ,v =

⎛⎜⎜⎝
v (m)

1
...

v (m)
m

⎞⎟⎟⎠ . (A.17)

E — identity matrix.

The first and last elements of the solution vector are calculated by the formulas:

u(m)
1 =±h

2
v (m)

m 〈y∗|ρ̃∗〉∓
(︃
1+ h

2
u(m)

1

)︃
〈z∗|ρ〉,

u(m)
1 =±h

2
v (m)

m 〈z̃|ρ̃∗〉−
(︃
1+ h

2
u(m)

1

)︃
〈ỹ|ρ〉. (A.18)

Parentheses denote scalar product 〈x|y〉 = xT ·y. We can introduce the following parameters

αm = h〈z∗|ρ〉, βm = h〈ỹ|ρ〉. (A.19)

Then equation (A.18) allows calculate v (m)
m :

v (m)
m = −βm/h

1± Im αm − 1
4 (|αm |2 ∓|βm |2)

. (A.20)

We assume that with the required accuracy αm =−u(xm ,0)h +O(h2), which leads us to the

final solution:

qm = 2v (m)
m =−2βm/h +O(h2). (A.21)

This procedure can be described as an algorithm that can be reversed. Next, we present

two algorithms of direct and inverse transformations, as a result of which a signal can be

reconstructed from the core (Algorithm 1) and vice versa: the integral core is obtained from

the signal (Algorithm 2).
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Algorithm 1. Inverse TIB algorithm for signal recovery from the kernel

1: m = 1 q0 =−2Ω0 y (1)
0 = 1

1∓h2|Ω0|2/4 z(1)
0 =− y1

0 hΩ0

2

2: βm = h
∑︁m−1

j=0 Ωm− j y (m)
j

3: qm =−2βm/h
4: cm = 1

1∓|βm |2 ,dm =−βmcm

5: y(m+1) = cm

(︃
y(m)

0

)︃
+dm

(︃
0

±z̃∗(m)

)︃
6: z(m+1) = cm

(︃
z(m)

0

)︃
+dm

(︃
0

ỹ∗(m)

)︃
7: Increment m, go to the step 2.

Algorithm 2. TIB direct algorithm for calculating the kernel from the signal

1: Ω0 =−q0/2
2: βm =−hqm/2

3: Ωm =
(︂
βm −h

∑︁m−1
j=1 Rm− j y (m)

j

)︂
/hy (m)

0

4: cm = 1
1∓|βm |2 ,dm =−βmcm

5: y(m+1) = cm

(︃
y(m)

0

)︃
+dm

(︃
0

±z̃∗(m)

)︃
6: z(m+1) = cm

(︃
z(m)

0

)︃
+dm

(︃
0

ỹ∗(m)

)︃
7: Increment m, go to the step 2.

A.1.3 N-soliton solution

Factorization of GLM equations

For a discrete spectrum, factorization of the kernel of the GLM equations leads to a system of

algebraic equations (a detailed description can be found in [212]). Then the N -soliton solution

can be found using the following exact expression:

q (N )(t , z = 0) =−2〈Ψ(t )|(Eˆ︁+Mˆ︁ ∗
(t )Mˆ︁ (t ))−1|Φ(t )〉 (A.22)

Eˆ︁ is N ×N identity matrix,

〈Ψ(t )| = 〈r1e−iξ1t , ...,rN e−iξN t |,
〈Φ(t )| = 〈e−iξ1t , ...,e−iξN t |,

Mˆ︁ k, j (t ) = r j
e i (ξ∗k−ξ j )t

ξ∗k −ξ j
, (A.23)

r j were defined in (1.24). For large N , numerical algorithms for this formula are unstable, but

for small N this method is very convenient. For the numerical inversion of matrices, O(n4)

operations are required in the general case. Special algorithms require O(n3) operations. The

process accumulates a calculation error and we cannot find a solution for large N ( N > 100 ).
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Recursive Darboux method

There is another method to find the N -soliton solution, which is called the dressing method.

The main idea of the method is to use the Darboux transformation, which is used to construct

an iterative scheme for finding the N -soliton solution. Consider this method in more detail.

Let us introduce the following system:{︄
Ψt = P (ξ, q)Ψ,

Ψz = M(ξ, q)Ψ,
, (A.24)

where operator M is defined in (1.13), and P is calculated by the formula

P =
(︄

−iξ q(t , z)

−q∗(t , z) iξ

)︄
. (A.25)

This is the same Q(t , z) matrix from the expression (1.14), but withσ= 1, since we study soliton

solutions. Also, we use the notation ξ – a complex number, but not necessarily an eigenvalue

for q , which is the solution underlying the system (A.24).

The algorithm begins with a trivial solution q (0) = 0, and the initial eigenvectors are chosen as

v(t ,ξ j ;0) = [A j e−iξ j t ,B j e iξ j t ]. The coefficients A j and B j determine the spectral amplitude

and shape of the pulse. In order to get new eigenvectors, one needs to use the following

formulas:

v1(t ,ξ j ; q (k+1)) = 1

∥v(t ,ξk+1; q (k))∥2

{{(ξ j −ξk+1)|v1(t ,ξk+1; q (k))|2+
+ (ξ j −ξ∗k+1)|v2(t ,ξk+1; q (k))|2}v1(t ,ξ j ; q (k))

(ξ∗k+1 −ξk+1)v1(t ,ξk+1; q (k))v∗
2 (t ,ξk+1; q (k))v2(t ,ξ j ; q (k))},

(A.26)

v2(t ,ξ j ; q (k+1)) = 1

∥v(t ,ξk+1; q (k))∥2

{{(ξ j −ξ∗k+1)|v1(t ,ξk+1; q (k))|2+
+ (ξ j −ξk+1)|v2(t ,ξk+1; q (k))|2}v2(t ,ξ j ; q (k))

(ξ∗k+1 −ξk+1)v∗
1 (t ,ξk+1; q (k))v2(t ,ξk+1; q (k))v1(t ,ξ j ; q (k))},

(A.27)

for k = 0, ..., N −2 and j = k +2, ..., N . A signal addition occurs according to the formula:

q (k+1) = q (k) +2i (ξ∗k+1 −ξk+1)
v1(t ,ξk+1; q (k))

∥v(t ,ξk+1; q (k))∥2
(A.28)

Such a method is convenient for obtaining N -soliton solutions with a large value of N , since

matrices are not required to be inverted.

E.Sedov, PhD Thesis, Aston University 2023 153



A.1 Methods for numerical calculations

A.1.4 Fourier collocation method for finding a nonlinear spectrum

For most of the initial potentials, the nonlinear spectrum cannot be calculated analytically. In

such cases, it is necessary to use numerical algorithms.

The equation (1.15) is a standard problem of finding the eigenvalues of the operator L and is

represented as a system: {︄ −∂tψ1 +q(t ,0)ψ2 = ξψ1

∂tψ2 −σq∗(t ,0)ψ1 = ξψ2.
(A.29)

One way to solve this problem is to move to finite difference schemes on a discrete grid. For

this, a finite interval is selected from the infinite interval along the t axis and is divided into

finite intervals, in accordance with the sampling grid. Derivatives operators are replaced by

their finite-difference analogues. After these operations, the problem (A.29) becomes the

standard task of finding eigenvalues and eigenfunctions for matrices, which can be solved

by standard algorithms: LR, QR, the Cholesky method and so on. It should be noted that the

QR-algorithm is more stable than the LR, which is now almost not used. Unfortunately, the

accuracy of approximation by means of the finite-difference method is rather low and can

lead to the appearance of "spurious" eigenvalues.

We can assume that if we could rewrite the original system (A.29) without differential operators,

then we could use this method to find the nonlinear spectrum. In this question, the classical

Fourier transform helps us, in which differential operators are replaced with multiplication by

the appropriate factor:{︄ −∂tψ1 +q(t ,0)ψ2 = ξψ1

∂tψ2 −σq∗(t ,0)ψ1 = ξψ2
→

{︄ −i kφ1 +uφ2 = ξφ1

i kφ2 −σu∗φ1 = ξφ2
(A.30)

In this transform, we replace the initial potential and eigenfunctions with the following discrete

sums:

ψ1(t ) =
N /2∑︂
−N /2

φ1,ne i nk0t ,ψ2(t ) =
N /2∑︂
−N /2

φ2,ne i nk0t , q(t ,0) =
N /2∑︂
−N /2

une i nk0t , (A.31)

where k0 = 2π/T , T is a time slot and N +1 is a number of discretization points (number

of Fourier modes) in the Fourier transform of the initial signal q(t ,0) (N is even). With this

transform, the initial problem (A.29) is replaced by the problem of finding eigenvalues for a

block matrix: (︄
−H1 H2

H †
2 H1

)︄(︄
φ1

φ2

)︄
= iξ

(︄
φ1

φ2

)︄
, (A.32)

where

φ1 = (φ1,−N /2,φ1,−N /2+1, ...,φ1,N /2−1,φ1,N /2)T

φ2 = (φ2,−N /2,φ2,−N /2+1, ...,φ2,N /2−1,φ2,N /2)T (A.33)
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The blocks of the matrix are as follows:

H1 = i k0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−N
2

−N
2 +1

. . .
N
2 −1

N
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.34)

H2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 u−1 . . . u−N

u1 u0 u−1
. . .

. . .
... u1 u0

. . .
. . .

. . .

uN
. . .

. . .
. . .

. . .
. . . u−N

uN
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . u−1

uN . . . u−1 u0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.35)

The accuracy of finding the eigenvalues for this system is much higher than for the original

equation (A.29), and the "fake" eigenvalues do not appear in the nonlinear spectrum.

A.1.5 Cauchy Integral

The problem of finding a discrete spectrum, as we have seen earlier, can be reduced to finding

the zeros of the coefficient a(ξ) in the upper complex half-plane. In this interpretation, the

dependence of the coefficient a on the complex variable ξ can be understood as a function

defined on the set of complex numbers. Therefore, we can apply the Cauchy integral formula

to solve the above problem:

f (z0) = 1

2πi

∫︂
Γ

f (z)

z − z0
d z, (A.36)

where D is a region in the complex plane with the boundary Γ= ∂D, f (z) is a holomorphic

function in D̄ , z0 is a point in D . We consider one turn, i.e. one bypass along the border of the

region D. To find the eigenvalues, we use the method described in [213, 214], which uses the

set of contour integrals {sp }P
p=1:

sp = 1

2πi

∫︂
Γ
ξp a′(ξ)

a(ξ)
dξ=

P∑︂
j=1

ξ
p
j , p = 1...P. (A.37)

where P is the number of zeros of the coefficient a(ξ) in the upper half-plane. Each contour

integral gives us the sum to the right in the expression that is used to find all the eigenvalues

(Fig. A.1a). When p = 0, the expression gives the total number of zeros inside the contour Γ.

This fact can be used to count the number of discrete eigenvalues for a given signal. To do this,

we rewrite the formula (A.37) for a contour that passes along the real axe and closes in the
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(a) (b)

Figure A.1: (a) Traversing several zeros on the complex plane. (b) Calculation the number of
zeros of a complex function.

upper half-plane through an infinitely distant point (Fig. A.1b):

N = 1

2π
Ar g (a(ξ))|+∞−∞, (A.38)

where N is the total number of solitons in the signal, the spectral parameter ξ takes values from

−∞ to +∞ on the real axe. In the framework of this task N = P . This formula is convenient

for numerical calculation: choosing a sufficiently large interval of the real straight line and

calculating the phase change of the coefficient a(ξ), we will know exactly the number of

discrete eigenvalues.

To find the individual eigenvalues, the so-called Newton identities {σ}P
p=1 are used:

−
P∑︂

j=1
ξ j =σ1,

ξ1ξ2 +ξ2ξ3 + ...+ξP−1ξP =σ2,

...

(−1)Pξ1ξ2...ξP =σP . (A.39)

which are associated with the value of the integrals:

s1 +σ1 = 0,

s2 + s1σ1 +2σ2 = 0,

...

sP + sP−1σ1 + ...+ s1σP−1 +PσP = 0 (A.40)

Solving this system, we obtain the values of each Newton identity, calculated by the recurrence

formula:

σp =− 1

p

(︄
sp +

p−1∑︂
j=1

s jσp− j

)︄
, p = 1...P. (A.41)
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As a result, σp (up to a sign) are Viète’s formulas for the polynomial

M(z) = zP +σ1zP−1 +σ2zP−2 + ...+σP−1z +σP , (A.42)

which zeros coincide with the zeros of the original coefficient a(ξ). Using any algorithm to

find the zeros of a polynomial, we thus calculate the discrete spectrum {ξ j }P
j=1.

One of the ways to find the zeros of the polynomial (A.42) is to go to the problem of finding

eigenvalues of the so-called companion matrix C (M):

C (M(z)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −σP

1 0 . . . 0 −σP−1

0 1 . . . 0 −σP−2
...

...
. . .

...
...

0 0 . . . 1 −σ1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (A.43)

for which the polynomial (A.42) is a characteristic polynomial. There exist effective algorithms

of finding eigenvalues of such a matrix, for example, the QR-algorithm [215–217].

A.2 Complexity of Nonlinear Fourier Transform

Computational complexity is one of the most important parameters of processing systems.

Number of floating point operations (FLOP) is used to evaluate this parameter. To assess

complexity in telecommunications, the FLOPs per symbol or per bit of transmitted information

is used. Fig. A.2a shows the value of FLOPs per symbol for the FNFT method depending on the

number of samples per symbol (SpS). As expected, the complexity increases with the number

of symbols transmitted, as the overall signal length grows. As SpS increases, the graph shifts

upward, since the number of points in the signal increases proportionally. Fig. A.2b shows

a comparison of the complexity of FNFT and DBP. This graph shows the value of FLOPs per

bit. The graph shows the FNFT method without additional estimation of the complexity for

the PJT method and the complexity of calculating the normalization factors for the discrete

spectrum. The graph shows that the complexity of the NFT is several times greater than the

complexity of the DBP. However, the complexity of the NFT is independent of the fiber length.

The peculiarity of estimating the number of operations for searching for discrete eigenvalues is

that it depends on the signal power. At higher power, there are more points in the continuous

spectrum, therefore the algorithm works longer. For PJT, the number of operations can be

estimated as follows: we can multiply the number of discrete eigenvalues by the average of the

number of operations to calculate one eigenvalue. The minimum number of operations can

be achieved using the Ablowitz-Ladik method, which gives us 49N operations to calculate one

coefficient a(ξ).

For example, our research shows that for 2048 symbols, with an average power of 0 dBm,
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about 105 additional calculations of the coefficients a(ξ) are required. The number of discrete

eigenvalues is about 103. As a result, 105 · 49N operations will be added to the FLOPs for

calculating the continuous spectrum. Then the number of operations for the bi-directional

algorithm for calculating the phase coefficients is added to this number. It is equal to the

number of eigenvalues multiplied by the number of operations to calculate one coefficient:

103 · 152N FLOPs. With 2048 symbols and SpS = 2, the number of points in the signal is

N = 2·211, which means in addition to the FLOPs per symbol shown in Fig. A.2, 105·50.5·2 ≈ 107

operations are added. This shows that the main computational costs are spent on calculating

the discrete spectrum and phase coefficients. As a solution to this problem, adaptive and fast

algorithms can be used to reduce the number of operations. For this it is necessary to develop

a fast bi-directional algorithm scheme.

We assume the number of operations for the inverse problem to be equal to the number of

operations for the direct problem, up to a coefficient. The main costs are required for the

Darboux method, the number of operations for which is proportional to N 2.
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Figure A.2: Complexity comparison. (a) Number of FLOPs per transmitted symbol for differ-
ent number of samples per symbol (SpS) for the FNFT method. (b) Number of FLOPs per
transmitted bit for DBP and FNFT methods (SpS = 2).

A.3 Bayesian Optimization of Neural Network Parameters

1 import os
2 import csv
3 import numpy as np
4 from tqdm import tqdm
5

6 from os.path import dirname , join as pjoin
7 import scipy as sp
8 import scipy.io as sio
9

10 import tensorflow as tf
11 from keras import callbacks
12 from keras. models import Sequential
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13 from keras. layers import Activation , Dense , Reshape , Flatten ,
BatchNormalization , Conv1D

14

15 from skopt import gbrt_minimize , gp_minimize , load
16 from skopt.utils import use_named_args
17

18 from skopt.space import Real , Categorical , Integer
19 from skopt. callbacks import CheckpointSaver
20

21 job_name = " polycoef_a_norm_1 "
22 # DRIVE_DIR = "/ home/esf0/ data_for_nn / data_nfdm /"
23 DRIVE_DIR = "/work/ec180/ec180/ esedov / data_for_polycoef /"
24 checkpoint_filepath = DRIVE_DIR + ’model_ ’ + job_name + ’_checkpoint ’
25 skopt_checkpoint_file = " b_checkpoint_ " + job_name + ".pkl"
26 skopt_param_file = " bo_param_ " + job_name + ".txt"
27 load_flag = True # previous bayesian optimiser state
28

29 input_shape = (1024 , 2)
30 output_shape = (1024 , 2)
31

32 patience = 500
33 n_epochs = 30000
34 n_params_max = 20 _000_000
35 initial_batch_size = 15000
36

37 # tf.keras. losses . MeanSquaredError ()
38 # tf.keras. losses . MeanSquaredLogarithmicError ()
39 loss_function = tf.keras. losses . MeanSquaredError ()
40 learning_rate = 1e-4
41

42 f_data_load = True
43 if f_data_load :
44 train_x = np.load( DRIVE_DIR + " data_polycoef_train_x_p_0_50_run_0 .npy

", allow_pickle =True)
45 train_y = np.load( DRIVE_DIR + "

data_polycoef_train_a_normalised_p_0_50_run_0 .npy", allow_pickle =True)
46

47 test_x = np.load( DRIVE_DIR + " data_polycoef_test_x_p_0_50_run_0 .npy",
allow_pickle =True)

48 test_y = np.load( DRIVE_DIR + "
data_polycoef_test_a_normalised_p_0_50_run_0 .npy", allow_pickle =True)

49

50 print(’data loaded ’)
51

52

53 n_conv_layers = Integer (low =2, high =4, name=’n_conv ’)
54

55 n_filters_1 = Integer (low =10, high =128 , name=’filters1 ’)
56 n_filters_2 = Integer (low =10, high =128 , name=’filters2 ’)
57 n_filters_3 = Integer (low =10, high =256 , name=’filters3 ’)
58 n_filters_4 = Integer (low =10, high =256 , name=’filters4 ’)
59
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60 s_kernel_1 = Integer (low =1, high =20, name=’kernel1 ’)
61 s_kernel_2 = Integer (low =1, high =20, name=’kernel2 ’)
62 s_kernel_3 = Integer (low =1, high =20, name=’kernel3 ’)
63 s_kernel_4 = Integer (low =1, high =20, name=’kernel4 ’)
64

65 stride_1 = Integer (low =1, high =3, name=’stride1 ’)
66 stride_2 = Integer (low =1, high =3, name=’stride2 ’)
67 stride_3 = Integer (low =1, high =3, name=’stride3 ’)
68 stride_4 = Integer (low =1, high =3, name=’stride4 ’)
69

70 dilation_1 = Integer (low =1, high =3, name=’dilation1 ’)
71 dilation_2 = Integer (low =1, high =3, name=’dilation2 ’)
72 dilation_3 = Integer (low =1, high =3, name=’dilation3 ’)
73 dilation_4 = Integer (low =1, high =3, name=’dilation4 ’)
74

75 n_dense_layers = Integer (low =1, high =3, name=’n_dense ’)
76 n_dense_cell_1 = Integer (low =128 , high =4096 , name=’cell1 ’)
77 n_dense_cell_2 = Integer (low =128 , high =4096 , name=’cell2 ’)
78 n_dense_cell_3 = Integer (low =128 , high =4096 , name=’cell3 ’)
79

80 act_func_1 = Categorical (name=’activation1 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

81 act_func_2 = Categorical (name=’activation2 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

82 act_func_3 = Categorical (name=’activation3 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

83 act_func_4 = Categorical (name=’activation4 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

84 act_func_5 = Categorical (name=’activation5 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

85 act_func_6 = Categorical (name=’activation6 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

86 act_func_7 = Categorical (name=’activation7 ’, categories =[’relu ’, ’sigmoid
’, ’tanh ’])

87

88

89 dimensions = [ n_conv_layers ,
90 n_filters_1 , n_filters_2 , n_filters_3 , n_filters_4 ,
91 s_kernel_1 , s_kernel_2 , s_kernel_3 , s_kernel_4 ,
92 stride_1 , stride_2 , stride_3 , stride_4 ,
93 dilation_1 , dilation_2 , dilation_3 , dilation_4 ,
94 n_dense_layers ,
95 n_dense_cell_1 , n_dense_cell_2 , n_dense_cell_3 ,
96 act_func_1 , act_func_2 , act_func_3 , act_func_4 , act_func_5 ,

act_func_6 , act_func_7 ]
97

98

99 def parse_arguments ( kwargs ):
100 # print(’ kwargs : ’, kwargs )
101 # parse arguments for convolutional layers
102 # print( kwargs [’ n_conv ’])
103 n_conv = kwargs [’n_conv ’]
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104

105 n_filters = []
106 s_kernel = []
107 stride = []
108 dilation = []
109 for k in range( n_conv ):
110 # print( kwargs [’ filters ’ + str(k + 1)])
111 n_filters . append ( kwargs [’filters ’ + str(k + 1)])
112 dilation . append (tuple ([ kwargs [’dilation ’ + str(k + 1) ]]))
113 s_kernel . append (tuple ([ kwargs [’kernel ’ + str(k + 1) ]]))
114 if kwargs [’dilation ’ + str(k + 1)] > 1:
115 stride . append (tuple ([1])) # TF doesn ’t support stride > 1

for dilation > 1
116 else:
117 stride . append (tuple ([ kwargs [’stride ’ + str(k + 1) ]]))
118

119 # print(n_filters , s_kernel , stride , dilation )
120

121 # parse arguments for dense layers
122 n_dense = kwargs [’n_dense ’]
123 # print( n_dense )
124

125 n_cell = []
126 for k in range( n_dense ):
127 n_cell . append ( kwargs [’cell ’ + str(k + 1)])
128

129 activation = []
130 for k in range( n_dense + n_conv ):
131 activation . append ( kwargs [’activation ’ + str(k + 1)])
132

133 # print(n_cell , activation )
134

135 return n_conv , n_dense , n_filters , s_kernel , stride , dilation , n_cell
, activation

136

137

138 def create_model (n_conv , n_filters , s_kernel , stride , dilation , n_dense ,
n_cell , activation , padding =’valid ’,

139 input_shape =(1024 , 2), output_shape =1024) :
140 # build convolutional neural network
141 # first layer has to have input shape
142 list_of_layers = [
143 Conv1D ( filters = n_filters [0], kernel_size = s_kernel [0], strides =

stride [0], dilation_rate = dilation [0],
144 activation = activation [0], padding =padding , input_shape =

input_shape )]
145 for k in range (1, n_conv ):
146 list_of_layers . append (
147 Conv1D ( filters = n_filters [k], kernel_size = s_kernel [k], strides

= stride [k], dilation_rate = dilation [k],
148 activation = activation [k], padding = padding ))
149 list_of_layers . append ( Flatten ())
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150 for k in range( n_dense ):
151 list_of_layers . append (Dense(units= n_cell [k], activation =

activation [k + n_conv ]))
152

153 if len(np.shape( output_shape )) == 0:
154 list_of_layers . append (Dense(units= output_shape )) # output layer

has to have output shape
155 else:
156 list_of_layers . append (Dense(units =( output_shape [0] * output_shape

[1])))
157 list_of_layers . append ( Reshape ( output_shape ))
158 model = Sequential ( list_of_layers )
159

160 return model
161

162

163 @use_named_args ( dimensions = dimensions )
164 def fitness (** kwargs ):
165 # this function is designed to make an arbitrary convolution neural

network
166 # so we have to parse argument in the beginning
167

168 n_conv , n_dense , n_filters , s_kernel , stride , dilation , n_cell ,
activation = parse_arguments ( kwargs )

169 # print(n_conv , n_filters , s_kernel , stride , dilation )
170 # print(n_dense , n_cell , activation )
171

172 losses = np.array ([999.0])
173 if load_flag :
174 try:
175 losses = np.load( DRIVE_DIR + ’losses_ ’ + job_name + ’.npy ’,

allow_pickle =True)
176 except Exception as e:
177 print(" Problem with loading losses ", e)
178 losses = np.array ([999.0])
179

180 padding = ’valid ’
181

182 loss = 100.0
183

184 model_build_flag = False
185

186 # build convolutional neural network
187 try:
188 model = create_model (n_conv , n_filters , s_kernel , stride ,

dilation , n_dense , n_cell , activation ,
189 padding =padding , input_shape = input_shape ,

output_shape = output_shape )
190 model_build_flag = True
191

192 except Exception as e:
193 # print (" Probably too big batch size", e)
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194 print(" Cannot create model")
195

196 if model_build_flag :
197

198 model. compile (loss= loss_function , # keras. losses .
mean_squared_error

199 optimizer =tf.keras. optimizers .Adam( learning_rate =
learning_rate ), # keras. optimizers .Adam(lr =0.001)

200 metrics =[’accuracy ’])
201

202 if model. count_params () > n_params_max :
203

204 loss = 10.0
205

206 else:
207

208 batch_size = initial_batch_size
209 flag_success = False
210

211 while not flag_success :
212

213 earlystopping = callbacks . EarlyStopping ( monitor ="loss",
214 mode="auto",
215 patience =patience

,
216

restore_best_weights =True)
217

218 checkpoint = callbacks . ModelCheckpoint ( filepath =
checkpoint_filepath ,

219 save_weights_only =
False ,

220 save_best_only =
True ,

221 monitor =’val_loss ’
,

222 mode=’min ’)
223

224 try:
225 history_w_aug = model.fit(train_x , train_y ,
226 validation_data =( test_x ,

test_y ),
227 epochs =n_epochs ,
228 batch_size =batch_size ,

verbose =0,
229 callbacks =[ earlystopping ])
230 except Exception as e:
231 print(" Probably too big batch size", e)
232 batch_size = int( batch_size / 2)
233 else:
234 flag_success = True
235
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236 predictions = model. predict ( test_x )
237 mse = tf.keras. losses . MeanSquaredError ()
238 loss = mse(test_y , predictions ).numpy ()
239

240 # check if loss is less then other and save
241 if loss < np.min(np.array( losses )):
242 # save model
243 model.save( DRIVE_DIR + ’model_ ’ + job_name + ’.h5’)
244

245 del model
246

247 # save model
248

249 # Print all the hyperparameters
250 print(’########################################################### ’)
251 print(’loss MSE:’, loss)
252 print(f"{loss} { n_conv } " +
253 f"{’ ’.join ([ str(l) for l in n_filters ])} " +
254 f"{’ ’.join ([ str(l) for l in s_kernel ])} " +
255 f"{’ ’.join ([ str(l) for l in stride ])} " +
256 f"{’ ’.join ([ str(l) for l in dilation ])} " +
257 f"{ n_dense } " +
258 f"{’ ’.join ([ str(l) for l in n_cell ])} " +
259 f"{’ ’.join( activation )}")
260 print(’########################################################### ’)
261 print(’ ’)
262

263 f_performance = open( DRIVE_DIR + skopt_param_file , ’a’)
264 f_performance .write(f"{loss} { n_conv } " +
265 f"{’ ’.join ([ str(l) for l in n_filters ])} " +
266 f"{’ ’.join ([ str(l) for l in s_kernel ])} " +
267 f"{’ ’.join ([ str(l) for l in stride ])} " +
268 f"{’ ’.join ([ str(l) for l in dilation ])} " +
269 f"{ n_dense } " +
270 f"{’ ’.join ([ str(l) for l in n_cell ])} " +
271 f"{’ ’.join( activation )}\n")
272 f_performance .close ()
273

274 # k_back . clear_session ()
275 losses = np. append (losses , loss)
276 np.save( DRIVE_DIR + ’losses_ ’ + job_name + ’.npy ’, losses )
277

278 return loss
279

280

281 checkpoint_saver = CheckpointSaver ( DRIVE_DIR + skopt_checkpoint_file ,
compress =9)

282

283 if load_flag :
284 res = load( DRIVE_DIR + skopt_checkpoint_file )
285 x0 = res. x_iters
286 y0 = res. func_vals
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287 else:
288 # x0 = default_parameters
289 x0 = None
290 y0 = None
291

292 gp_result = gp_minimize (func=fitness ,
293 dimensions =dimensions ,
294 n_calls =10000 ,
295 noise =0.01 ,
296 n_jobs =-1,
297 kappa =5,
298 callback =[ checkpoint_saver ],
299 x0=x0 ,
300 y0=y0)

Listing A.1: Bayesian Optimisation of NN Parameters

A.4 NFT performance for different modulation and baudrate
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Figure A.3: Example of NFT performance for 16-QAM WDM with 3 dBm average power, 34
GBd symbol frequency and 960 km of SMF. Upper pane shows the signal amplitude while
lower pane shows the relative error for NFT restoration.
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Figure A.4: Same as Fig. A.3 for 64-QAM (left) and 1024-QAM (right).
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Figure A.5: Same as Fig. A.3 for 16-QAM and 64 GBd (left) and 100 GBd (right).
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Figure A.6: NF spectrum for WDM signal with 34 GBd and 16-QAM.
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Figure A.7: NF spectrum for WDM signal with 64 GBd and 16-QAM.
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Figure A.8: NF spectrum for WDM signal with 100 GBd and 16-QAM.
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B Appendix: Real-Time Demonstration
of Optical Communication System
Using HpCom Simulator

This interactive demonstration offers a unique, real-time exploration of optical communica-

tion system simulations, powered by the High-Performance COMmunication (HpCom) library

(Fig. B.1). Participants can witness first-hand the effects of system parameters and signal

processing techniques on image quality, transforming a photograph taken at our stand into a

vivid illustration of optical communication complexities.

In the rapidly advancing domain of optical communication systems, efficient, high-performance

simulation tools are of critical importance. Recognizing the need for a software tailored to the

demands of this field, we introduce our GPU-accelerated HpCom library[183]. This framework

enhances simulation capabilities, fostering innovation and accelerating research.

The use of GPUs in our library provides significant advantages, such as parallel computations,

scalability, and power efficiency. These aspects enable efficient handling of large-scale compu-

tations, an essential feature for researchers tackling the computational demands of emerging

optical communication systems.

Our demo serves as an educational platform, illustrating how GPU-based simulations allow

researchers to explore varied scenarios quickly and efficiently, leading to faster discoveries

and more effective resource utilization. As participants interact with the demo, they will gain a

tangible understanding of the impacts of system parameter changes and advanced techniques

on signal quality.

B.1 Procedure

The primary objective of this demonstration is to showcase the speed of our numerical simu-

lations. To emphasize this, we propose a demonstration procedure in which each stage takes

no more than a few dozen seconds, contingent on the specific system parameters.

1. Image Capture and Conversion: A visitor to the stand has their photograph taken. This

digital image, composed of a matrix of pixels, is then transformed into binary data. Every
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Figure B.1: Framework architecture for optical communication system simulation, featuring
optimized transceiver (Tx) design, GPU-accelerated SSFM-based channel model (with N spans
of length L), receiver implementation (Rx), and performance metrics evaluation including
BER, EVM, and MI.

pixel, composed of red, green, and blue (RGB) colour components, is broken down into its

RGB values. These values are then converted into binary format, generating a long bit stream

that serves as the payload for the ensuing simulation.

2. Setting Simulation Parameters: The visitor is invited to interact with our intuitive web

interface, designed to provide control over various simulation parameters. These parameters

include:

Average power The mean optical power launched into the fibre in dBm. Default

Pave = 0 [dBm].

Modulation format The optical modulation scheme used to encode the data. Possible

values are 4-, 16-, 64-, 256- and 1024-QAM.

Symbol frequency Symbol frequency in GHz. Default is 34 [GHz].

Number of spans The number of optical fibre spans. Default is 12.

Length of spans The length of each fibre span. Default is 80 [km].

Attenuation The fibre’s attenuation parameter. For SMF α= 0.2 [dB/km]

Nonlinearity The fibre’s nonlinearity parameter. For SMF γ= 1.2 [W ·km]−1.

Noise The amplified spontaneous emission (ASE) noise from the erbium-

doped fibre amplifiers (EDFAs). Default value is 4.5 [dB]. For system

without noise big negative value is used, e.g. -200.

Dispersion The fibre’s chromatic dispersion parameter. For SMF D = 16.8 ps/[nm·
km].

Simulation step Length of simulation step in km. Default is 5 [km].
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3. Signal Generation and Propagation: Once the parameters are set, the HpCom library

generates the signal according to the selected modulation format and propagates it through

the simulated optical fibre. The library employs the Split-Step Fourier method to accurately

simulate the combined effects of chromatic dispersion, nonlinearity, and noise.

4. Decoding and Visualization: After the signal propagation, the signal is received on the

receiver, where a corresponding matched filter is applied, followed by equalisation and de-

modulation. The resulting bit stream is transformed back into the RGB image data, which

is rendered on the screen. The image is likely to show distortions due to the impairments

introduced during signal propagation, as no Forward Error Correction (FEC) is applied.

5. Application of Advanced Techniques: To demonstrate how advanced signal processing

techniques can improve the system performance, visitors are given the option to enable these

strategies. This includes Machine Learning techniques for impairment mitigation and Digital

Back Propagation (DBP) to compensate for the combined effects of chromatic dispersion and

nonlinearity. The number of DBP steps per span can also be adjusted for optimal performance.

Throughout the demo, the impact of various parameters and techniques on the resulting

image quality is clearly observable, providing visitors with a tangible understanding of optical

communication systems’ complexity. By comparing the initial and final images, they can

directly see the effects of their chosen settings. The demo’s real-time and interactive nature

makes it a unique educational tool for those interested in optical communications.

B.2 Interface

The practical setup is structured as follows: The React frontend manages the web interface,

parameter input, log display, and selection of images. The backend comprises a Telegram

bot that receives and stores images sent from a mobile camera, a Flask backend to manage

frontend changes and activate the optical channel simulation, and a simulation channel that

utilizes the HpCom package for its simulations.

Figure B.3 displays an instance of the interface with specific images and settings. The inter-

face is primarily divided into two main sections: a visualization section on the left and an

information and control section on the right.

Within the interface, the Visualization Section prominently features the "Original Image" at

the top-left. This image, captured with a mobile camera, represents the initial input prior

to any optical channel simulations. As example, Fig. B.3 captures a scene from the ECOC

2023 GLASGOW conference, featuring two attendees. To maintain their privacy, their faces

have been tastefully blurred. Adjacent to and below this original capture are three other

images, each denoting a distinct processing technique, notably "prop," "cdc," and "dbp10."

The "prop" image consistently displays the aftermath of channel simulation without any

equalization applied. Meanwhile, the other images have undergone various equalization
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procedures. Specifically, "cdc" reveals the outcome post-chromatic dispersion compensation

and nonlinear phase equalization. The labels "dbp2", "dbp3", and "dbp10" depict the results

of DBP with 2, 3, and 10 steps per fiber span, respectively. The "nn" label showcases additional

nonlinear distortion equalization, employing different neural networks. The precise neural

network deployed aligns with the specific fiber parameters. The labels "view1" through "view4"

offer alternate perspectives of the constellation post-CDC and NPE.

Transitioning to the Information and Control Section, it encompasses details about both

the utilized library and the aforementioned conference. Furthermore, it comprises a simu-

lation parameters segment, a methods dropdown menu allowing users to select the visual

representation, and a log console to track operations.

B.3 Example Demonstration

Figure B.2: The left image is the original picture to be transmitted. The central image showcases
how the picture appears after signal propagation through an optical system with parameters:
Pave = 0 [dBm], 12×80 [km] spans of SSFM. The fiber was characterized by an attenuation
coefficient of α = 0 [dB/km], EDFA noise figure 4.5 [dB], a dispersion coefficient of D =
16.8 ps/[nm ·km], and a nonlinear coefficient of γ = 1.2 [W ·km]−1. The image on the right
demonstrates the when Pave = 5 [dBm].

As illustrated in Fig. B.2, we demonstrate the process of image corruption due to signal

propagation with specific system parameters. The original image of a parrot (left) undergoes

signal propagation with parameters: 12×80 [km] spans of standard single-mode fiber (SSFM),

attenuation coefficient of α= 0 [dB/km], EDFA noise figure 4.5 [dB], a dispersion coefficient

of D = 16.8 ps/[nm ·km], and a nonlinear coefficient of γ= 1.2 [W ·km]−1. The resultant image

(centre) exhibits the distortions introduced by these system parameters. Increasing the Pave

to 5 [dBm] (right image) further alters the image quality, showing how different power levels

can impact the quality of the received signal.
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Figure B.3: ECOC2023 GLASGOW Demo Interface: Left side displays 4 spans for image selection, while the right side offers sections for
simulation parameter adjustments, mode selection, and a log console.
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Figure B.4: Signal propagation with parameters: 10×50 [km] spans of TWC fibre, attenuation coefficient of α= 0.2 [dB/km], EDFA noise figure
4.5 [dB], a dispersion coefficient of D = 2.8 ps/[nm ·km], and a nonlinear coefficient of γ= 2.5 [W ·km]−1, average signal power Pave = 5 dBm,
QPSK format. (a) Original image. (b) Image post-propagation without equalisation. (c) Image after CDC and NPE. (d) and (e) DBP with 2 and
3 steps per span, respectively. (f ) Image after NN equalisation for received symbols. (g) to (j) Various constellation diagram representations.
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Figure B.5: Signal propagation with parameters: 6×80 [km] spans of SMF, attenuation coefficient of α = 0.2 [dB/km], EDFA noise figure
4.5 [dB], a dispersion coefficient of D = 16.8 ps/[nm ·km], and a nonlinear coefficient of γ= 1.2 [W ·km]−1, average signal power Pave = 10
dBm, 64-QAM format. (a) Original image. (b) Image post-propagation without equalisation. (c) Image after CDC and NPE. (d) and (e) DBP
with 2 and 3 steps per span, respectively. (f ) Image after NN equalisation for received symbols. (g) to (j) Various constellation diagram
representations.
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B.4 Conclusion

Figure B.4 illustrates signal propagation through a system with the following parameters: spans

of 10×50 [km] using TWC fibre, an attenuation coefficient α= 0.2 [dB/km], an EDFA noise

figure of 4.5 [dB], a dispersion coefficient D = 2.8 ps/[nm ·km], and a nonlinear coefficient

γ= 2.5 [W·km]−1. The average signal power is set at Pave = 5 dBm, and the modulation format

is QPSK. The figure showcases various stages of the signal, from the original image to different

processing methods, including propagation without equalisation, CDC and NPE application,

DBP with different steps per span, and equalisation using NN. Additionally, it features different

constellation diagram representations.

Figure B.5 presents signal propagation in a setup characterized by: spans of 6×80 [km] using

SMF, an attenuation coefficient α= 0.2 [dB/km], an EDFA noise figure of 4.5 [dB], a dispersion

coefficient D = 16.8 ps/[nm ·km], and a nonlinear coefficient γ= 1.2 [W ·km]−1. The average

signal power stands at Pave = 10 dBm, utilizing a 64-QAM format. The visualizations in the fig-

ure encompass the original image and its evolutions after several processing techniques, such

as post-propagation without equalisation, the effects of CDC and NPE, DBP at varying steps

per span, and NN equalisation. The figure concludes with different views of the constellation

diagram.

B.4 Conclusion

Through this live demonstration, participants can explore the capabilities and benefits of the

HpCom library and better understand the impact of various parameters and techniques on

signal quality in optical communication systems. By directly observing the results of their

choices, participants will gain a better understanding of the complexities of optical signal

transmission and the opportunities for improvement.
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C Appendix: HpCom Code Examples

C.1 Defining the Parameters

The following list details the elements of the WDM parameters dictionary created by the

create_wdm_parameters function:

n_channels Number of Wavelength Division Multiplexing channels.

channel_spacing Channel spacing in Hz.

n_polarisations Number of polarizations.

p_ave_dbm Average power in dBm.

n_symbols Number of symbols.

m_order Modulation order.

modulation_type Type of modulation, derived from modulation order.

n_bits_symbol Number of bits per symbol, derived from modulation type.

roll_off Roll-off factor for Root Raised Cosine filter.

upsampling Upsampling factor.

downsampling_rate Downsampling rate.

symb_freq Symbol frequency in Hz.

sample_freq Sampling frequency in Hz, calculated as the product of symbol fre-

quency and upsampling factor.

np_filter Nyquist pulse filtering.

p_ave Average power in Watts, calculated from p_ave_dbm.

E.Sedov, PhD Thesis, Aston University 2023 179



C.1 Defining the Parameters

seed Seed for random number generator.

scale_coef Scale coefficient for constellation, derived based on modulation type,

average power, and number of polarizations.

Below is an example of how the create_wdm_parameters function can be used with some

specific parameters:

1 # Import the function
2 from hpcom. signal import create_wdm_parameters
3

4 # Define the parameters
5 n_channels = 4
6 p_ave_dbm = -3
7 n_symbols = 2**15
8 m_order = 16
9 roll_off = 0.2

10 upsampling = 4
11 downsampling_rate = 2
12 symb_freq = 32e9
13 channel_spacing = 50e9
14

15 # Call the function
16 wdm_params = create_wdm_parameters (
17 n_channels , p_ave_dbm , n_symbols , m_order ,
18 roll_off , upsampling , downsampling_rate ,
19 symb_freq , channel_spacing
20 )
21

22 # Now wdm_params contains the WDM parameters dictionary

Listing C.1: Usage of create_wdm_parameters function

In example C.1, the create_wdm_parameters function is called with specific values for the

parameters, and the resulting dictionary is stored in the wdm_params variable.

The functions get_default_wdm_parameters and get_default_channel_parameters fur-

nish the capability to generate default parameters for WDM signal creation and SSMF channel

with EDFA amplification, respectively.

1 def get_default_wdm_parameters ():
2

3 wdm = {}
4 wdm[’n_channels ’] = 1 # Single WDM channel
5 wdm[’channel_spacing ’] = 75e9 # 75 GHz
6 wdm[’n_polarisations ’] = 2 # 2 polarisations - Manakov equation
7 wdm[’p_ave_dbm ’] = 0 # dBm
8 wdm[’n_symbols ’] = 2 ** 15
9 wdm[’m_order ’] = 16 # 16- QAM

10 wdm[’roll_off ’] = 0.1 # 0.1 roll -off for RRC filter
11 wdm[’upsampling ’] = 8 # 8 times oversampling
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12 wdm[’downsampling_rate ’] = 1
13 wdm[’symb_freq ’] = 64e9 # 64 GHz
14 wdm[’sample_freq ’] = int(wdm[’symb_freq ’] * wdm[’upsampling ’]) #

sampling frequency
15 wdm[’p_ave ’] = (10 ** (wdm[’p_ave_dbm ’] / 10)) / 1000 # Average power

in Watts
16 wdm[’modulation_type ’] = get_modulation_type_from_order (wdm[’m_order ’])

# 16- QAM
17 wdm[’n_bits_symbol ’] = get_n_bits (wdm[’modulation_type ’]) # 4 bits per

symbol
18 wdm[’seed ’] = ’fixed ’ # fixed seed for random number generator
19 wdm[’scale_coef ’] = get_scale_coef_constellation (wdm[’modulation_type ’])

/ np.sqrt(wdm[’p_ave ’] / wdm[’n_polarisations ’]) # scale coefficient
for constellation

20

21 return wdm

Listing C.2: Default WDM parameters

1 def get_default_channel_parameters ():
2

3 channel = {}
4 channel [’n_spans ’] = 12 # Number of spans
5 channel [’z_span ’] = 80 # Span Length [km]
6 channel [’alpha_db ’] = 0.225 # Attenuation coefficient [dB km^-1]
7 channel [’alpha ’] = channel [’alpha_db ’] / (10 * np.log10(np.exp (1)))
8 channel [’gamma ’] = 1.2 # Non - linear Coefficient [W^-1 km ^ -1]. Default =

1.2
9 channel [’noise_figure_db ’] = 4.5 # Noise Figure [dB]. Default = 4.5

10 channel [’noise_figure ’] = 10 ** ( channel [’noise_figure_db ’] / 10)
11 channel [’gain ’] = np.exp( channel [’alpha ’] * channel [’z_span ’]) # gain

for one span
12 channel [’dispersion_parameter ’] = 16.8 # [ps nm^-1 km^-1] dispersion

parameter
13 channel [’beta2 ’] = -(1550e-9 ** 2) * ( channel [’dispersion_parameter ’] *

1e -3) / (2 * np.pi * 3e8) # conversion to beta2 - Chromatic Dispersion
Coefficient [s^2 km^-1]

14 channel [’beta3 ’] = 0
15 channel [’h_planck ’] = 6.62607015e -34 # Planck ’s constant [J/s]
16 channel [’fc’] = 299792458 / 1550e-9 # carrier frequency
17 channel [’dz’] = 1.0 # length of the step for SSFM [km]
18 channel [’nz’] = int( channel [’z_span ’] / channel [’dz’]) # number of

steps per each span
19 channel [’noise_density ’] = channel [’h_planck ’] * channel [’fc’] * (

channel [’gain ’] - 1) * channel [’noise_figure ’]
20 channel [’seed ’] = ’fixed ’
21

22 return channel

Listing C.3: Default channel parameters
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C.2 Typical fibre parameters

Table C.1: Typical parameters for LEAF, TWC, and SMF fibers at 1550 nm.

Fiber Type Dispersion Attenuation Nonlinearity
ps/[nm ·km] [dB/km] [W ·km]−1

LEAF (1550 nm) 4 – 8 0.2 – 0.25 0.8 – 1.2
TWC (1550 nm) 2.5 – 3.5 0.2 – 0.25 2 – 3
SMF (1550 nm) 16.5 – 17.5 0.2 – 0.25 1.1 – 1.5

C.3 Appropriate scaling for constellation points
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Figure C.1: A visualization displaying two sets of 16-QAM constellations on a complex plane.
The left plot shows the original constellation, marked in blue, where each point represents a
unique symbol. The right plot illustrates the scaled constellation, colored in red, which has
been normalized to achieve a specified average power level of 0.1.

Constellation points normalization is a technique used in digital signal processing, specifically

in the context of modulation in communications, to ensure that the average power of the con-

stellation points matches a desired level. This process is particularly important in systems like

Wavelength Division Multiplexing (WDM), where each signal’s power needs to be controlled

to avoid interference and optimize the transmission.

The average power of a constellation is computed as the mean of the squared magnitudes of
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all the constellation points. In the Python code provided, the constellation points are obtained

and then scaled to match the desired average power, Pave , which is an attribute of the WDM

system.

The scaling factor is derived by dividing the square root of Pave by the square root of the actual

average power of the unscaled constellation. This ensures that after scaling, the constellation

will have the required average power. The functions get_scale_coef_constellation and

get_sq_of_average_power are used to compute the scaling factor based on the modulation

type.

Let ck represent the constellation points for a given modulation scheme, and Pave denote the

desired average power for the WDM system. The scaling process can be expressed as:

ck,scaled = ck ·
⎷

Pave

σc

where σc is the scaling factor for constellation and defined as:

σc =
⌜⃓⃓⎷ 1

N

N∑︂
i=1

|ci |2

Here, N is the number of constellation points, and |ci | is the magnitude of the i -th constellation

point. This normalization ensures that the average power of the constellation is equal to Pave.

The value ⎷
Pave

σc

is the scaling coefficient that is used to adjust the constellation from a standard scale (as

shown in Fig. C.1) to the desired power level.

C.4 Simulation Script for Data Mining

The script C.4 serves as a detailed example of simulating and analyzing optical communication

systems. It begins by importing necessary libraries such as TensorFlow for GPU memory

management, Pandas for data handling, and HpCom for signal generation and channel

modeling. By specifying a directory for data storage and a job name, it ensures organized

handling of different simulation batches. The script outlines a variety of system, signal, and

channel parameters, setting the stage for a range of simulation scenarios. Through nested

loops, it iterates over various configurations of these parameters, each time setting up the

signal and channel conditions, running the simulation, and collecting key metrics like bit

error rate and Q-factor, along with the transmitted and received points. This data is compiled

into a Pandas DataFrame, which is then saved to a Pickle file for each set of channel count
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and average power values, ensuring organized storage of simulation outcomes. The script also

demonstrates efficient management of GPU memory allocation, which is crucial in multi-GPU

setups. By conducting multiple runs with identical parameters, it accumulates a significant

amount of data, addressing the limitations posed by restricted GPU memory. A ’done’ message

at the end signifies the successful completion of the script, exemplifying a structured approach

to exploring and analyzing various configurations in optical communication systems. This

script can serve as a robust framework for those looking to conduct thorough analyses of

optical communication systems under varying conditions.

1 # Import of necessary packages
2 import tensorflow as tf # tensorflow used for GPU memory allocation
3 import pandas as pd # pandas used for data storage
4 import hpcom # hpcom used for signal generation and channel modelling
5 from tqdm import tqdm # tqdm used for progress bar
6

7 # Directory with data files for Linux and Windows
8 data_dir = "/home/ username /data/"
9 # data_dir = ’C:/ Users/ username /data/’

10

11 # Name of the job to store data for different parameters
12 job_name = ’example ’
13

14 # System parameters
15 GPU_MEM_LIMIT = 1024 * 6 # 6 GB of GPU memory is allocated
16

17 # Signal parameters
18 n_polarisations = 1 # number of polarisations . Can be 1 for NLSE and 2

for Manakov
19 n_symbols = 2 ** 18 # number of symbols to be transmitted for each run
20 m_order = 16 # modulation order (16-QAM , 64-QAM , etc .)
21 symb_freq = 34e9 # symbol frequency
22 channel_spacing = 75e9 # channel spacing
23 roll_off = 0.1 # roll -off factor for RRC filter
24 upsampling = 16 # upsampling factor
25 downsampling_rate = 1 # downsampling rate
26 p_ave_dbm_list = [-2, -1, 0, 1, 2] # list of average power values in dBm
27

28 # Channel parameters
29 z_span = 80 # span length in km
30 n_channels_list = [1, 7, 15] # number of WDM channels
31 n_span_list = [6, 8, 10, 12, 14] # 480, 640, 800, 960, 1120
32 noise_figure_db_list = [-200, 4.5] # list of noise figure values in dB.

-200 means no noise
33 alpha_db = 0.2 # attenuation coefficient in dB/km
34 gamma = 1.2 # nonlinearity coefficient
35 dispersion_parameter = 16.8 # dispersion parameter in ps/nm/km
36 dz = 1 # step size in km
37

38 # Simulation parameters
39 n_runs = 64 # number of runs for each parameter set
40 verbose = 0 # verbose level. 0 - no print , 3 - print all system logs
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41 seed = ’time ’ # seed for random number generator . ’time ’ - use current
time , ’fixed ’ - fixed seed

42 channels_type = ’middle ’ # type for which of WDM channels all metrics
will be calculated . ’middle ’ - middle channel , ’all ’ - all channels

43

44 # GPU memory allocation
45 gpus = tf. config . list_physical_devices (’GPU ’)
46 print("Num GPUs Available : ", len(gpus), gpus)
47 if gpus:
48 # Restrict TensorFlow to only allocate 4GB of memory on the first GPU
49 try:
50 tf. config . set_logical_device_configuration (
51 gpus [0],
52 [tf. config . LogicalDeviceConfiguration ( memory_limit = GPU_MEM_LIMIT )])
53 logical_gpus = tf. config . list_logical_devices (’GPU ’)
54 print(len(gpus), " Physical GPUs ,", len( logical_gpus ), " Logical GPUs")
55 except RuntimeError as e:
56 # Virtual devices must be set before GPUs have been initialized
57 print(e)
58

59 for n_channels in n_channels_list :
60 for p_ave_dbm in p_ave_dbm_list :
61

62 # Create an empty dataframe
63 df = pd. DataFrame ()
64 for noise_figure_db in noise_figure_db_list :
65

66 for n_span in n_span_list :
67 for run in tqdm(range( n_runs )):
68 print(f’run = {run} / n_channels = { n_channels } / ’
69 f’p_dbm = { p_ave_dbm } / n_span = { n_span } / ’
70 f’noise = { noise_figure_db }’)
71

72 # Signal parameters
73 wdm_full = hpcom. signal . create_wdm_parameters ( n_channels =n_channels ,

p_ave_dbm =p_ave_dbm ,
74 n_symbols =n_symbols , m_order =m_order ,
75 roll_off =roll_off , upsampling =upsampling ,
76 downsampling_rate = downsampling_rate ,
77 symb_freq =symb_freq ,
78 channel_spacing = channel_spacing ,
79 n_polarisations = n_polarisations , seed=seed)
80

81 # Channel parameters
82 channel_full = hpcom. channel . create_channel_parameters ( n_spans =

n_span ,
83 z_span =z_span ,
84 alpha_db =alpha_db ,
85 gamma=gamma ,
86 noise_figure_db = noise_figure_db ,
87 dispersion_parameter = dispersion_parameter ,
88 dz=dz)
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89

90 # Run the simulation
91 result_channel = hpcom. channel . full_line_model_wdm_new ( channel_full ,

wdm_full ,
92 channels_type = channels_type ,
93 verbose = verbose )
94

95 # Store the results
96 result_dict = {}
97

98 result_dict [’run ’] = run # run number
99 result_dict [’n_channels ’] = n_channels # number of WDM channels

100 result_dict [’n_polarisations ’] = n_polarisations # number of
polarisations

101 result_dict [’n_symbols ’] = n_symbols # number of symbols
102 result_dict [’p_ave_dbm ’] = p_ave_dbm # average power in dBm
103 result_dict [’z_km ’] = n_span * 80 # total distance in km
104 result_dict [’scale_coef ’] = wdm_full [’scale_coef ’] # scale

coefficient for signal generation
105

106 result_dict [’noise_figure_db ’] = channel_full [’noise_figure_db ’] #
noise figure in dB

107 result_dict [’gamma ’] = channel_full [’gamma ’] # nonlinearity
coefficient

108 result_dict [’z_span ’] = channel_full [’z_span ’] # span length in km
109 result_dict [’dispersion_parameter ’] = channel_full [’

dispersion_parameter ’] # dispersion parameter in ps/nm/km
110 result_dict [’dz’] = channel_full [’dz’] # step size in km
111

112 result_dict [’points_orig ’] = result_channel [’points_orig ’] #
original points

113 result_dict [’points ’] = result_channel [’points ’] # points after
transmission

114 result_dict [’points_shifted ’] = result_channel [’points_shifted ’] #
points after transmission , cromatic dispersion compensation and phase
shifting

115

116 result_dict [’ber ’] = result_channel [’ber ’] # bit error rate
117 result_dict [’q’] = result_channel [’q’] # Q- factor
118 result_dict [’evm ’] = result_channel [’evm ’] # error vector magnitude
119 result_dict [’mi’] = result_channel [’mi’] # mutual information
120

121 # Store the results in a dataframe
122 df = pd. concat ([df , pd. DataFrame ( result_dict )], ignore_index =True)
123

124 # Store the dataframe in a pickle file
125 df. to_pickle ( data_dir + ’data_collected_ ’ + job_name + ’_nch_ ’ + str(

n_channels ) +
126 ’_pavedbm_ ’ + str( p_ave_dbm ) + ’.pkl ’)
127

128 # Finish the script
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129 print(’done ’)

Listing C.4: Example of data generation for range of parameters
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RHP Riemann-Hilbert Problem. 16

RNN Recurrent neural network. 80

RRC Root Raised Cosine. ix, 34–36, 63, 99, 101, 102, 105, 115, 130

RZ return-to-zero. 35, 71

SDM Space Division Multiplexing. 2

SMF Single-mode fiber. xiv, xv, 105, 165, 172, 177, 178

SNR Signal-to-noise ratio. xi, xii, 34, 78, 79, 83–87, 89

SSFM Split-step Fourier method. 63, 95, 123

SSMF Standard single-mode fiber. 63, 96, 104, 115, 130, 180

TWC TrueWave classic. xv, 176, 178
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Acronyms

ZS Zakharov-Shabat. 22, 80

ZSP Zakharov-Shabat problem. 18, 19, 26

ZSSP Zakharov-Shabat spectral problem. 18
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