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Abstract. A neural network architecture is proposed to determine 
the number of solitons generated by random processes in optical 
wavelength-division multiplexed telecommunication systems with 
QPSK, 16-QAM, 64-QAM, and 1024-QAM modulation. The 
dependence of the prediction quality of a neural network with a spe-
cial architecture on the number of soliton modes in the signal and 
the parameters of this signal is studied.

Keywords: nonlinear Schrödinger equation, inverse scattering prob-
lem method, Zakharov – Shabat problem, nonlinear Fourier trans-
form, neural networks, machine learning, optical telecommunica-
tion systems, wavelength-division multiplexing.

1. Introduction

Currently, there is an increased interest in optical telecommu-
nications, since they are responsible for the transmission of 
more than 99 % of global information traffic over transoce-
anic distances (1000 km or more). However, it is a matter of 
concern that a permanent increase in the volume of transmit-
ted traffic may in the near future exceed the potential capa-
bilities of information transmission lines based on modern 
technologies [1, 2]. In this regard, new promising ways to 
increase the capacity of communication lines are being 
actively explored [3]. Since the propagation of optical signals 
in optical fibres is described by the nonlinear Schrödinger 
equation (NSE), data transmission can be based on solitons, 
i.e. signals that do not change their shape during propagation 
[4]. To date, this idea has not been widely developed due to 
various limitations imposed on soliton communication lines, 
and major commercial technologies still use systems with 
wavelength-division multiplexing (WDM systems).

Although modelling optical channels has always been a 
difficult task, the use of coherent technologies to increase 
the information capacity of long-distance optical links has 

made the modelling of the behaviour of optical systems even 
more time-consuming. Many tunable parameters of fibre-
optic communication lines (FOCLs), such as modulation 
formats, symbol rates, adaptive encoding rates, and adjust-
able channel separation, allow one to optimise data trans-
mission systems, but require a large amount of calculations 
to determine the optimal values of the system parameters. 
In addition, the optimisation problem becomes even more 
challenging if the nonlinearity of the optical channel is taken 
into account.

Recently, there have been propositions to study modern 
signal modulation formats for the presence of solitons in 
them [5 – 8]. Such studies provide a better understanding of 
how telecommunication signals evolve over long distances 
and what causes nonlinear distortions that lead to loss of 
transmitted information. The method for studying signals in 
this problem is called the nonlinear Fourier transform 
(NFT). In fact, the name NFT is often found in the signal 
processing literature and serves to refer to the operations 
performed in the inverse scattering method used for inte-
grating a special class of nonlinear equations. The inverse 
scattering method for NSE (that is, an explicit mathematical 
representation of NFT operations) was first described in the 
celebrated work by Zakharov and Shabat [9]. The direct 
NFT consists in attributing an optical signal to its nonlinear 
spectrum: the latter consists of (in the most general case) dis-
crete and continuous parts [10]. The set of discrete eigenval-
ues corresponds to the soliton part of the signal. This repre-
sentation is convenient, because the components (nonlinear 
modes), when applying the NFT to a signal with a finite 
norm, evolve in a trivial (linear) way as the signal propa-
gates along a nonlinear optical fibre, while the discrete 
eigenvalues remain constant. For any value of the evolution 
variable, the signal can be completely restored using the 
inverse NFT if the propagation channel can be described 
well enough by the NSE. The NFT method is used for con-
structing analytical solutions of integrable equations 
[11,  12], as well as for analysing the contribution of solitons 
to signals obeying non-integrable equations that contain the 
NSE as one of the parts of a more general system [13 – 16].

The main difficulty in the wide application of the NFT 
method for the analysis of optical signals is the lack of fast 
and sufficiently accurate numerical methods for its imple-
mentation. Currently, there are a large number of methods 
for determining the nonlinear spectrum [17 – 20] and signifi-
cant progress has been made in reducing the asymptotic 
complexity of algorithms (fast NFT) [21, 22] and improving 
their accuracy [23 – 25]. However, when applying the NFT 
to complex signals, problems may arise with the stability of 
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computational algorithms [26]. In addition, the NFT calcu-
lation for complex signal forms remains difficult, which lim-
its the possibilities of implementing NFT at the hardware 
level for use in modern fibre-optic communication lines.

A promising direction in this case is the use of methods 
and systems for processing optical signals, based on the 
principles of machine learning, in particular using neural 
networks. In recent years, there has been a dramatic advance 
in the development of machine learning methods for solving 
algorithmically complex problems, such as image recogni-
tion and classification [27, 28]. The main steps in solving 
these problems are training the model using a set of certain 
data and applying it to obtain a prediction. The first stage 
may take a long time. However, the use of a trained model is 
usually much faster, which allows implementation of 
machine learning systems on various devices with low per-
formance. We should also note that machine learning meth-
ods are used quite successfully to compensate for nonlinear 
effects that occur when a signal propagates in an optical 
fibre [29 – 32]. Recently, it was proposed to use machine 
learning in NFT-based data transmission systems at the 
post-processing stage [33]. In this work, we propose to 
implement a more radical approach and calculate the NFT 
itself using neural networks. Note that machine learning 
methods have already been used to process signals consist-
ing only of soliton components when the number of soliton 
modes was small [34 – 36].

2. Nonlinear Fourier transform

The propagation of light in an optical fibre is well described 
using the NSE, which, with some restrictions, can be repre-
sented in a dimensionless form:
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Here q(z, t) is the slowly varying optical field in the fibre; z is 
the distance along the fibre axis; and t is time in the reference 
frame moving with the group velocity of the wave packet 
[37]. In this paper, we only consider the case of the focusing 
NSE for which there are soliton solutions, i.e. the sign of 
dispersion (anomalous dispersion) at the minimum-loss fre-
quency corresponds to a standard single-mode fibre. To 
simplify the analysis, we do not take into account the gain 
and loss in the fibre, as well as the presence of noise compo-
nents.

The NSE in form (1) belongs to the class of integrable 
equations that can be solved by the inverse scattering method 
[38]. The direct NFT allows one to determine the scattering 
data (characteristics of nonlinear modes) and consists in solv-
ing the Zakharov – Shabat spectral problem using a localised 
‘potential’ q(z, t), which is an optical signal:
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Here yi are auxiliary functions, and the complex parameter 
l = x + i h is a nonlinear analogue of frequency. To determine 
the nonlinear spectrum associated with the profile q = q(z, t), 
it is necessary to find a special solution F (t, l) = {f1, f2} 
of system (2), satisfying the condition F ® {exp(–i xt), 0} at 

t ® – ¥. The main part of the direct NFT consists in calculat-
ing the scattering coefficients a(l) and b(l), defined using a 
special solution F(t, l) as follows:
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We do not consider the continuous part of the nonlinear 
spectrum, and further analysis refers to the discrete part, 
i.e., the characteristics of solitons. The soliton modes corre-
spond to discrete eigenvalues ln, which are set using the con-
dition a(ln) = 0. The root of this equation is sought in the 
upper complex half-plane of the parameter l, i.e. for ln = 
xn + i hn the condition hn > 0 is satisfied. In fact, the pres-
ence of discrete eigenvalues that arise in the analysis of the 
Zakharov – Shabat problem with a potential in the form of 
our signal indicates the presence of soliton components in 
the signal.

3. Architecture of the neural network 
used for analysis of the soliton component 
of optical signals

Since linear, nonlinear, and noise effects manifest themselves 
simultaneously when we transmit data over fibre-optic com-
munication lines, such systems are well fit to be dealt with 
using the latest advances in machine learning methods. Using 
these methods, it is possible to solve the problem of multidi-
mensional optimisation (for example, in terms of data trans-
mission quality and data throughput maximisation) without 
having to iterate through all possible parameter values.

Of particular relevance is the problem of identifying 
some internal features and patterns of the transmitted data, 
where neural networks can be used to simulate various 
effects that affect the signal when it propagates through a 
noisy nonlinear medium. In other words, neural networks 
can be used to simulate nonlinear transformations without 
the need for direct calculation of these transformations. The 
advantage lies in the speed and versatility of the transforma-
tion, as well as the flexibility and adaptability of operations 
based on a neural network: the network does not know what 
data it processes; it looks for the necessary features in the 
data that affect the final result, and then extracts them. This 
process is called feature extraction. Thus, if we want to cal-
culate a certain value of a function, instead of (possibly) 
complex calculations, we can use a pre-trained network that, 
with a pre-known number of operations, will give the desired 
result. The difficulty is that the neural networks need to be 
trained up-front on the known data.

Another advantage of signal processing based on neural 
networks is that networks can reduce the noise component 
present in the analysed data [38]. In practice, we almost 
always encounter a situation where there is some noise in the 
data, for example, due to the finite accuracy of measurements, 
and its presence may be critical for accurate data processing 
methods. A neural network can effectively filter out unneces-
sary information within itself, leaving only the basic features 
needed for a specific task. Note that one of the disadvantages 
of using neural networks is the final accuracy of the result 
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attainable with the use of a trained network. However, in 
practice, the accuracy of a neural network is sufficient for 
most tasks and sometimes even exceeds the accuracy of exist-
ing numerical methods if the necessary set of training data is 
available.

4. Discussion of results

In this work, we used a neural network to predict the num-
ber of discrete eigenvalues in a nonlinear spectrum of tele-
communication signals. The discrete spectrum reflects the 
internal structure of the signal, and knowledge of this 
structure allows one to find out the signal properties and 
the features of its propagation over a nonlinear optical 
fibre.

Optical signals encoded by the widely used WDM for-
mat were selected for the study. A single WDM symbol 
can be represented as the sum of independent optical car-
riers [8]:

( ) ( ) ( )exp is t C t f tk k
k
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where M is the number of WDM optical channels; wk is the 
carrier frequency of the kth channel; Ck corresponds to digi-
tal data in the kth channel (the value of this coefficient is a 
random variable from a set corresponding to the selected 
modulation format); T is the symbol interval; and f(t) is the 
signal envelope with zero values at the edges of the symbol 
interval, the normalised expression for which without loss of 
generality can be written as
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The signal was generated from a random dataset 
encoded in one of the modulation formats for Ck : QPSK, 
16-QAM, 64-QAM, and 1024-QAM, corresponding to 4, 
16, 64, and 1024 possible values of Ck, selected from the 
‘constellation’ on a complex plane. The number M of spec-
tral channels for each signal from the set was one of the 
following: {9, 11, 13, 15, 17, 31, 51}. This set of values was 
taken to cover the number of channels used in existing 
WDM systems. An example of the WDM signal amplitude 
is shown in Fig. 1a, while an example of a discrete spec-
trum for such a signal is shown in Fig. 1b. The neural net-
work architecture was based on a simplified version of the 
VGG-16 network [39], which is used in image recognition 
problems (Fig. 2a). Such architectures, where convolu-
tional layers with the same number of input channels are 
sequentially arranged, demonstrate high efficiency by 
reducing the number of trained parameters while maintain-
ing the overall prediction accuracy. To further improve the 
accuracy, it is necessary to increase the number of convolu-
tional layers. This increases the learning time of the model; 
however, it allows us to select more features in the input 
data, and therefore improve the operation accuracy. The 
neural network input receives a complex signal consisting 
of 1 024 points. This signal is converted to a vector with 
2 048 elements, in which the real and imaginary parts of 
each point of the original complex signal are sequentially 

arrayed. The signal is then processed by several convolu-
tional layers with activation functions and then passed 
through the fully connected layers. The network output 
shows the number of solitons in the signal. The number of 
trained parameters in the network was 3 834 145.

In total, the training set consists of 174 847 generated sig-
nals, which contain from 0 to 20 solitons. The exact number 
of solitons in each signal was preliminarily calculated using 
a modification of the method of contour integrals [19], 
where the grid step in the spectral space was adaptively cal-
culated depending on the number of solitons in the signal. 
To speed up the learning process on the train ing data set, for 
each signal we calculate only the number of discrete eigen-
values in the nonlinear spectrum, rather than the numerical 
value of each of the discrete spectral parameters correspond-
ing to the soliton mode. A set of data with complete infor-
mation on the nonlinear spectrum for each signal will be 
considered in subsequent works. The accuracy of network 
predictions was determined using a validation set of 
19 427 signals (10 % of the total training set). The network 
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Figure 1. (a) Example of the dependence of the amplitude of the WDM 
signal under study on time (one of the possible implementations is giv-
en), and (b) example of the location of the discrete spectrum compo-
nents in the complex half-plane of the spectral parameter l for one of 
the signals under study.
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was trained for 300 epochs, and the final prediction accuracy 
on the validation set was 95.39 %. In the training process, we 
use for optimisation the Adam algorithm (adaptive moment 
estimation). The learning rate was varied during the training 
process from 10–3 at the beginning to 10–5 at the end. Its fur-
ther reduction did not lead to an increase in the prediction 
accuracy.

Figure 2b shows the distribution of correct and incorrect 
neural network predictions as a function of the number of 
solitons in the signal for the validation sample. The green 
curve shows the neural network accuracy as a function of the 
number of solitons. The network worked best for signals 
where the number of solitons was greater than 10. For such 
cases, the accuracy exceeded 98 %. Signals with a single soli-
ton component were processed the worst, with an accuracy of 
84 %. In this case, the maximum ‘error’ of the network opera-
tion (the difference between the real number of solitons in the 
signal and the soliton number predicted by our neural net-
work) was 8 (Fig. 2c). Negative error values correspond to the 
case when the network predicts a smaller number of solitons 
in the signal than the true number, and positive values occur 
when the neural network predicts a larger number of solitons 
than is present in the signal. Figure 2b shows the distribution 
of the deviation of the predicted number of solitons in the 
signals generated by the validation sample from their actual 
number: most of the incorrect results are in the range [–2; 2]. 
Thus, the neural network’s prediction often deviates by a 
small value. This means that it captures general features indi-

cating the number of solitons but cannot fully identify par-
ticular features. Obviously, with an increase in the number of 
convolutional layers, the neural network will be able to deter-
mine the internal features of signals more accurately, which 
means that its accuracy can be improved. The results show 
that neural networks have a great potential for implementing 
various stages of NFT with their help.

5. Conclusions

Thus, machine learning and neural network are modern tech-
nologies that are actively explored in nonlinear signal pro-
cessing and for optical communication. The proposed neural 
network architecture demonstrates the fundamental possibil-
ity of its application for the analysis of complex optical sig-
nals. This opens up prospects for improving existing systems 
without the need for a deep understanding of the internal 
nonlinear processes that affect the signal transmission qual-
ity. We have found that modern neural networks can deter-
mine the internal structure of optical signals, and therefore 
can be used as a practical tool for their analysis. This stage is 
undoubtedly only the beginning of research on the possibility 
of using neural networks for optical communication. A prom-
ising direction is the development of autoencoders that will 
not only generate optical signals with the necessary parame-
ters, but also select the optimal modulation and encoding for-
mats. We stress that the method proposed in this work is only 
the first step in the development of machine learning methods 
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for studying optical signals. The obtained results demonstrate 
that even a network with a small number of trainable param-
eters can identify complex nonlinear structures of optical sig-
nals with high accuracy.
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